Ting AH, McGarvey KM, Baylin SB. The cancer epigenome—components and functional correlates. Genes Dev. 2006;20:3215–31.
Article
CAS
Google Scholar
Website. https://doi.org/10.1074/jbc.M201864200.Accessed 2 Feb 2021.
Huang TH-M, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast Cancer cells. Hum Mol Genet. 1999;8:459–70.
Article
CAS
Google Scholar
Baylin SB, Ohm JE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction?Nat. Rev Cancer. 2006;6:107–16.
Article
CAS
Google Scholar
Medina-Aguilar R, Pérez-Plasencia C, Marchat LA, Gariglio P, Mena JG, Cuevas SR, et al. Methylation Landscape of human breast Cancer cells in response to dietary compound resveratrol. PLoS One. 2016;11:e0157866.
Article
Google Scholar
Ong TP, Moreno FS, Ross SA. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention. LFG. 2011;4:275–92.
CAS
Google Scholar
Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. ProcNatlAcadSci U S A. 1992;89:1827–31.
Article
CAS
Google Scholar
Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, et al. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol. 2018;19:1–19.
Article
Google Scholar
Zhou J, Zhao M, Sun Z, Wu F, Liu Y, Liu X, et al. BCREval: a computational method to estimate the bisulfite conversion ratio in WGBS. BMC Bioinformatics. 2020;21:1–8.
Article
CAS
Google Scholar
Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28:1045–8.
Article
CAS
Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
Article
Google Scholar
Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, et al. BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol. 2012;30:224–6.
Article
CAS
Google Scholar
Eurice GmbH. Welcome to IHEC · IHEC. http://ihec-epigenomes.org/.Accessed 2 Feb 2021.
Yu J, Zayas J, Qin B, Wang L. Targeting DNA methylation for treating triple-negative breast cancer. Pharmacogenomics. 2019;20:1151–7.
Article
CAS
Google Scholar
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA methylation in the resistance to therapy in solid tumors. Front Oncol. 2020;10:1152. https://doi.org/10.3389/fonc.2020.01152.
Lyu J, Li JJ, Su J, Peng F, Chen YE, Ge X, et al. DORGE: Discovery of oncogenes and tumoR suppressor genes using genetic and epigenetic features. Sci Adv. 2020;6:eaba6784.
Article
CAS
Google Scholar
Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.
Article
CAS
Google Scholar
Lübbert M, Suciu S, Hagemeijer A, Rüter B, Platzbecker U, Giagounidis A, et al. Decitabine improves progression-free survival in older high-risk MDS patients with multiple autosomal monosomies: results of a subgroup analysis of the randomised phase III study 06011 of the EORTC Leukemia Cooperative Group and German MDS Study Group. Ann Hematol. 2016;95:191–9.
Article
Google Scholar
Link A, Balaguer F, Shen Y, Lozano JJ, Leung H-CE, Boland CR, et al. Curcumin modulates DNA methylation in colorectal cancer cells. PLoS ONE. 2013;8:e57709.
Article
CAS
Google Scholar
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer Carcinogenesis. 2010;31:27–36.
CAS
Google Scholar
Nirgude S, Desai S, Choudhary B. Curcumin alters distinct molecular pathways in breast cancer subtypes revealed by integrated miRNA/mRNA expression analysis. Cancer Rep (Hoboken). 2022;5(10):e1596. https://doi.org/10.1002/cnr2.1596.
Nirgude S, Desai S, Mahadeva R, Ravindran F, Choudhary B. ST08 altered NF-κB pathway in breast Cancer cells in Vitro as revealed by miRNA-mRNA analysis and enhanced the Effect of Cisplatin on Tumour reduction in EAC Mouse Model. Front Oncol. 2022;12:835027. https://doi.org/10.3389/fonc.2022.835027.
Ravindran F, Koroth J, Manjunath M, Narayan S, Choudhary B. Curcumin derivative ST09 modulates the miR-199a-5p/DDR1 axis and regulates proliferation and migration in ovarian cancer cells. Sci Rep. 2021;11:23025.
Article
CAS
Google Scholar
[No title]. https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_legacy/WGBS_for_Methylation_Analysis_Guide_15021861_B.pdf. Accessed 17 Jan 2021.
Babraham Bioinformatics -. FastQC A Quality Control tool for High Throughput Sequence Data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 10 Feb 2021.
Babraham Bioinformatics - Trim. Galore! https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.Accessed 10 Feb 2021.
Guo W, Fiziev P, Yan W, Cokus S, Sun X, Zhang MQ, et al. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics. 2013;14:1–8.
Article
Google Scholar
CGmapTools. support BS-seq data analyses with command-lines. https://cgmaptools.github.io/index.html. Accessed 10 Feb 2021.
UCSC Genome Browser Home. https://genome.ucsc.edu/. Accessed 10 Feb 2021.
bedtools. a powerful toolset for genome arithmetic — bedtools 2.30.0 documentation. https://bedtools.readthedocs.io/en/latest/. Accessed 10 Feb 2021.
Tumor suppressor gene. database (TSGene) Home. https://bioinfo.uth.edu/TSGene/. Accessed 10 Feb 2021.
ONGene. http://ongene.bioinfo-minzhao.org/. Accessed 10 Feb 2021.
The Cancer Genome Atlas Program. 2018. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. Accessed 10 Feb 2021.
Li Y, Ge D, Lu C. The SMART app: an interactive web application for comprehensive DNA methylation analysis and visualisation. Epigenetics Chromatin. 2019;12:1–9.
Article
Google Scholar
The Cancer Genome Atlas Program. National Cancer Institute. 2018. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. Accessed 8 Jul 2022.
Ca2 + and. CACNA1H mediate targeted suppression of breast cancer brain metastasis by AM RF EMF. EBioMedicine. 2019;44:194–208.
Mathioudaki A, Ljungström V, Melin M, Arendt ML, Nordin J, Karlsson Å, et al. Targeted sequencing reveals the somatic mutation landscape in a swedish breast cancer cohort. Sci Rep. 2020;10:1–13.
Article
Google Scholar
Tumor suppressor gene. database (TSGene) Home. https://bioinfo.uth.edu/TSGene/. Accessed 7 Feb 2021.
ONGene. http://ongene.bioinfo-minzhao.org/.Accessed 7 Feb 2021.
STRING. functional protein association networks. https://string-db.org/. Accessed 9 Feb 2021.
Koroth J, Nirgude S, Tiwari S, Gopalakrishnan V, Mahadeva R, Kumar S, et al. Investigation of anticancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. BMC Complement Altern Med. 2019;19:273.
Article
Google Scholar
Nirgude S, Mahadeva R, Koroth J, Kumar S, Kumar KSS, Gopalakrishnan V, et al. ST09, a Novel Curcumin Derivative, Blocks Cell Migration by inhibiting matrix metalloproteases in breast Cancer cells and inhibits Tumor Progression in EAC Mouse Tumor Models. Molecules. 2020;25(19):4499. https://doi.org/10.3390/molecules25194499.
Triple-Negative Breast Cancer. 2020. https://www.breastcancer.org/symptoms/diagnosis/trip_neg. Accessed 16 Feb 2021.
Triple-negative Breast Cancer. https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/types-of-breast-cancer/triple-negative.html. Accessed 16 Feb 2021.
Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer. 2016;8:93–107.
CAS
Google Scholar
Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast Cancer Cell Lines: one Tool in the search for Better Treatment of Triple negative breast Cancer. Breast Dis. 2010;32:35.
Article
Google Scholar
Rojas KI. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer (TNBC) in a peruvian institute. J Clin Oncol. 2013;31:e12038–8.
Article
Google Scholar
Costa RLB, Gradishar WJ. Triple-negative breast Cancer: current practice and future directions. J Oncol Pract. 2017;13:301–3.
Article
Google Scholar
Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61:3225–9.
CAS
Google Scholar
Butler C, Sprowls S, Szalai G, Arsiwala T, Saralkar P, Straight B, et al. Hypomethylating Agent Azacitidine is effective in treating Brain Metastasis Triple-Negative breast Cancer through regulation of DNA methylation of keratin 18 gene. Transl Oncol. 2020;13(6):100775. https://doi.org/10.1016/j.tranon.2020.100775.
Connolly RM, Jankowitz RC, Andreopoulou E, Allred JB, Jeter SC, Zorzi J, et al. OT3-01-06: a phase 2 study investigating the safety, efficacy and surrogate biomarkers of response of 5-Azacitidine (5-AZA) and entinostat (MS-275) in patients with advanced breast Cancer. Ongoing Clinical Trials Poster Session Abstracts; 2011.
Librizzi M, Chiarelli R, Bosco L, Sansook S, Gascon JM, Spencer J, et al. The histone deacetylase inhibitor JAHA Down-Regulates pERK and global DNA methylation in MDA-MB231. Breast Cancer Cells Materials. 2015;8:7041–7.
CAS
Google Scholar
Stefansson OA, Moran S, Gomez A, Sayols S, Arribas-Jorba C, Sandoval J, et al. A DNA methylation-based definition of biologically distinct breast cancer subtypes. MolOncol. 2015;9:555–68.
CAS
Google Scholar
Stirzaker C, Zotenko E, Song JZ, Qu W, Nair SS, Locke WJ, et al. Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun. 2015;6:1–11.
Article
Google Scholar
Rice JC, Ozcelik H, Maxeiner P, Andrulis I, Futscher BW. Methylation of the BRCA1 promoter is associated with decreased BRCA1 mRNA levels in clinical breast cancer specimens. Carcinogenesis. 2000;21:1761–5.
Article
CAS
Google Scholar
Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, et al. High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. ProcNatlAcadSci U S A. 2000;97:6049–54.
Article
CAS
Google Scholar
Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:1–7.
Article
Google Scholar
Arechederra M, Daian F, Yim A, Bazai SK, Richelme S, Dono R, et al. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat Commun. 2018;9:1–16.
Google Scholar
Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90.
Article
CAS
Google Scholar
Pradhan D, Jour G, Milton D, Vasudevaraja V, Tetzlaff MT, Nagarajan P, et al. Aberrant DNA methylation predicts melanoma-specific survival in patients with Acral Melanoma. Cancers (Basel). 2019;11(12):2031. https://doi.org/10.3390/cancers11122031.
Liu WB, Han F, Jiang X, Yin L, Chen HQ, Li YH, et al. Epigenetic regulation of ANKRD18B in lung cancer. Mol Carcinog. 2015;54(4):312–21. https://doi.org/10.1002/mc.22101.
Mustafa M, Lee JY, Kim MH. CTCF negatively regulates HOXA10 expression in breast cancer cells. Biochem Biophys Res Commun. 2015;467(4):828–34. https://doi.org/10.1016/j.bbrc.2015.10.058.
Chu MC, Selam FB, Taylor HS. HOXA10 regulates p53 expression and matrigel invasion in human breast cancer cells. Cancer Biol Ther. 2004;3(6):568–72. https://doi.org/10.4161/cbt.3.6.848.
Naselli F, Belshaw NJ, Gentile C, Tutone M, Tesoriere L, Livrea MA, et al. Phytochemical Indicaxanthin inhibits Colon Cancer Cell Growth and affects the DNA methylation status by influencing epigenetically modifying enzyme expression and activity. J NutrigenetNutrigenomics. 2015;8:114–27.
CAS
Google Scholar
Jeon M, Han J, Nam SJ, Lee JE, Kim S. Elevated IL-1β expression induces invasiveness of triple negative breast cancer cells and is suppressed by zerumbone. ChemBiol Interact. 2016;258:126–33.
Article
CAS
Google Scholar
Wilson S, Greer B, Hooper J, Zijlstra A, Walker B, Quigley J, et al. The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. Biochem J. 2005;388:967–72.
Article
CAS
Google Scholar
Lam DK, Dang D, Flynn AN, Hardt M, Schmidt BL. TMPRSS2, a novel membrane-anchored mediator in cancer pain. Pain. 2015;156:923–30.
Article
CAS
Google Scholar
Yang J, Niu H, Huang Y, Yang K. A systematic analysis of the relationship of CDH13 promoter methylation and breast Cancer risk and Prognosis.PLoS. One. 2016;11:e0149185.
Article
Google Scholar
Toyooka KO, Toyooka S, Virmani AK, Sathyanarayana UG, Euhus DM, Gilcrease M, et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res. 2001;61:4556–60.
CAS
Google Scholar
Guo Q, Wang H-B, Li Y-H, Li H-F, Li T-T, Zhang W-X, et al. Correlations of promoter methylation in WIF-1, RASSF1A, and CDH13 genes with the risk and prognosis of Esophageal Cancer. Med Sci Monit. 2016;22:2816–24.
Article
CAS
Google Scholar
Wang Y, Zhang L, Yang J, Li B, Wang J. CDH13 promoter methylation regulates cisplatin resistance of non-small cell lung cancer cells. OncolLett. 2018;16:5715–22.
CAS
Google Scholar
Wang L, Ozark PA, Smith ER, Zhao Z, Marshall SA, Rendleman EJ, et al. TET2 coactivates gene expression through demethylation of enhancers. Sci Adv. 2018;4:eaau6986.
Article
CAS
Google Scholar
Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015;29:910.
Article
CAS
Google Scholar
IntOGen. - FAT3 gene cancer mutations in BRCA. https://www.intogen.org/search?gene=FAT3&cancer=BRCA. Accessed 17 Feb 2021.
Gradek F, Lopez-Charcas O, Chadet S, Poisson L, Ouldamer L, Goupille C, et al. Sodium Channel na v 1.5 controls epithelial-to-mesenchymal transition and invasiveness in breast Cancer cells through its regulation by the salt-inducible Kinase-1. Sci Rep. 2019;9:1–14.
Article
Google Scholar
Serra V, Eichhorn PJA, García-García C, Ibrahim YH, Prudkin L, Sánchez G, et al. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. J Clin Invest. 2013;123:2551–63.
Article
CAS
Google Scholar
Wong KK. DNMT1: a key drug target in triple-negative breast cancer. Semin Cancer Biol. 2020. https://doi.org/10.1016/j.semcancer.2020.05.010.
Article
Google Scholar
Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun. 2015;6:6910.
Article
CAS
Google Scholar
Good CR, Panjarian S, Kelly AD, Madzo J, Patel B, Jelinek J, et al. TET1-Mediated hypomethylation activates Oncogenic Signaling in Triple-Negative breast Cancer. Cancer Res. 2018;78(15):4126–37. https://doi.org/10.1158/0008-5472.CAN-17-2082.
Article
CAS
Google Scholar
Gilles A, Frechin L, Natchiar K, Biondani G, von Loeffelholz O, Holvec S, et al. Targeting the human 80S ribosome in Cancer: from structure to function and Drug Design for innovative adjuvant therapeutic strategies. Cells. 2020;9(3):629. https://doi.org/10.3390/cells9030629.
Hengel SR, Ashley Spies M, Spies M. Small molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer therapy. Cell Chem biology. 2017;24:1101.
Article
CAS
Google Scholar
Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355(6330):1152–8. https://doi.org/10.1126/science.aam7344.
Article
CAS
Google Scholar