Aghamohammadi M, Haine D, Kelton DF, Barkema HW, Hogeveen H, et al. Herd-level mastitis-associated costs on Canadian dairy farms. Front Vet Sci. 2018;5:100. https://doi.org/10.3389/fvets.2018.00100.
Article
Google Scholar
Halasa T, Huijps K, Østeras O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Vet Q. 2007;29:18–31. https://doi.org/10.1080/01652176.2007.9695224.
Article
CAS
Google Scholar
Peton V, Le Loir Y. Staphylococcus aureus in veterinary medicine. Infect Genet Evol. 2014;1(21):602–15. https://doi.org/10.1016/j.meegid.2013.08.011.
Article
Google Scholar
Wellnitz O, Bruckmaier RM. The innate immune response of the bovine mammary gland to bacterial infection. Vet J. 2012;192(2):148–52. https://doi.org/10.1016/j.tvjl.2011.09.013.
Article
CAS
Google Scholar
Barkema HW, Schukken YH, Zadoks RN. Invited review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci. 2006;89(6):1877–95. https://doi.org/10.3168/jds.S0022-0302(06)72256-1.
Article
CAS
Google Scholar
Magro G, Biffani S, Minozzi G, Ehricht R, Monecke S, et al. Virulence genes of S. aureus from dairy cow mastitis and contagiousness risk. Toxins. 2017;9(6):195. https://doi.org/10.1007/s10142-005-0019-7.
Article
CAS
Google Scholar
Dego OK, Van Dijk JE, Nederbragt H. Factors involved in the early pathogenesis of bovine Staphylococcus aureus mastitis with emphasis on bacterial adhesion and invasion. a review. Vet Q. 2002;24(4):181–98. https://doi.org/10.1080/01652176.2002.9695135.
Article
CAS
Google Scholar
Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett. 2013;150(1–2):12–22. https://doi.org/10.1016/j.imlet.2013.01.004.
Article
CAS
Google Scholar
Le Maréchal C, Thiéry R, Vautor E, Le Loir Y. Mastitis impact on technological properties of milk and quality of milk products—a review. Dairy Sci Technol. 2011;91(3):247–82. https://doi.org/10.1007/s13594-011-0009-6.
Article
Google Scholar
Sutra L, Poutrel B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J Med Microbiol. 1994;40(2):79–89. https://doi.org/10.1099/00222615-40-2-79.
Article
CAS
Google Scholar
Kaufmann ME. Pulsed-field gel electrophoresis. In Molecular Bacteriology 1998;(33–50). Humana Press. doi: https://doi.org/10.1038/nprot.2007.94
Mobasherizadeh S, Shojaei H, Havaei SA, Mostafavizadeh K, Davoodabadi F, et al. Application of the random amplified polymorphic DNA (RAPD) fingerprinting to analyze genetic variation in community associated-methicillin resistant Staphylococcus aureus (CA-MRSA) isolates in Iran. Global J Health Sci. 2016;8(8):185. https://doi.org/10.5539/gjhs.v8n8p185.
Article
Google Scholar
Stanley T, Wilson IG. Multilocus enzyme electrophoresis. Mol Biotechnol. 2003;24(2):203–20. https://doi.org/10.1385/1-59259-029-2:369.
Article
CAS
Google Scholar
Saunders NA, Holmes A. Multilocus sequence typing (MLST) of Staphylococcus aureus. InMethicillin-resistant Staphylococcus aureus (MRSA) protocols 2007;(71–85). Humana Press. doi: https://doi.org/10.1007/978-1-62703-664-1_7
Fasihi Y, Fooladi S, Mohammadi MA, Emaneini M, Kalantar-Neyestanaki D. The spa typing of methicillin-resistant Staphylococcus aureus isolates by high resolution melting (HRM) analysis. J Med Microbiol. 2017;66(9):1335–7. https://doi.org/10.1099/jmm.0.000574.
Article
CAS
Google Scholar
Schouls LM, Spalburg EC, van Luit M, Huijsdens XW, Pluister GN, et al. Multiple-locus variable number tandem repeat analysis of Staphylococcus aureus: comparison with pulsed-field gel electrophoresis and spa-typing. PLoS ONE. 2009;4(4): e5082. https://doi.org/10.1371/journal.pone.0005082.
Article
CAS
Google Scholar
Naushad S, Barkema HW, Luby C, Condas LA, Nobrega DB, et al. Comprehensive phylogenetic analysis of bovine non-aureus staphylococci species based on whole-genome sequencing. Front Microbiol. 2016;20(7):1990. https://doi.org/10.3389/fmicb.2016.01990.
Article
Google Scholar
Lindsay JA, Holden MT. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics. 2006;6(3):186–201.
Article
CAS
Google Scholar
Monistero V, Graber HU, Pollera C, Cremonesi P, Castiglioni B, et al. Staphylococcus aureus isolates from bovine mastitis in eight countries: genotypes, detection of genes encoding different toxins and other virulence genes. Toxins. 2018;10(6):247. https://doi.org/10.3390/toxins10060247.
Article
CAS
Google Scholar
Oliver SP, Murinda SE. Antimicrobial resistance of mastitis pathogens. Vet Clin North Am Food Anim Pract. 2012;28(2):165–85. https://doi.org/10.1016/j.cvfa.2012.03.005.
Article
Google Scholar
Hoekstra J, Zomer AL, Rutten VP, Benedictus L, Stegeman A, et al. Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis. Sci Rep. 2020;10(1):1–1. https://doi.org/10.1038/s41598-020-75179-2.
Article
CAS
Google Scholar
Naushad S, Nobrega DB, Naqvi SA, Barkema HW, De Buck J. Genomic analysis of bovine Staphylococcus aureus isolates from milk to elucidate diversity and determine the distributions of antimicrobial and virulence genes and their association with mastitis. mSystems. 2020;5(4):e00063–20. doi: https://doi.org/10.1128/mSystems.00063-20
Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans Part 1-literature review. J Mammary Gland Biol Neoplasia. 2011;16:357–72. https://doi.org/10.1007/s10911-011-9236-y.
Article
Google Scholar
Schlotter K, Ehricht R, Hotzel H, Monecke S, Pfeffer M, et al. Leukocidin genes lukF-P83 and lukM are associated with Staphylococcus aureus clonal complexes 151, 479 and 133 isolated from bovine udder infections in Thuringia, Germany. Vet Res. 2012;43(1):1–8. https://doi.org/10.1186/1297-9716-43-42.
Article
CAS
Google Scholar
Matuszewska M, Murray GG, Ba X, Wood R, Holmes MA, et al. Stable antibiotic resistance and rapid human adaptation in livestock-associated MRSA. Elife. 2022;11: e74819. https://doi.org/10.7554/eLife.74819.
Article
CAS
Google Scholar
Grumann D, Nübel U, Bröker BM. Staphylococcus aureus toxins–their functions and genetics. Infect Genet Evol. 2014;21:583–92. https://doi.org/10.1016/j.meegid.2013.03.013.
Article
CAS
Google Scholar
Bar-Gal GK, Blum SE, Hadas L, Ehricht R, Monecke S, et al. Host-specificity of Staphylococcus aureus causing intramammary infections in dairy animals assessed by genotyping and virulence genes. Vet Microbiol. 2015;176(1–2):143–54. https://doi.org/10.1016/j.vetmic.2015.01.007.
Article
CAS
Google Scholar
Moller AG, Lindsay JA, Read TD. Determinants of phage host range in Staphylococcus species. Appl Environ Microbiol. 2019;85(11):e00209-e219. https://doi.org/10.1128/AEM.00209-19.
Article
CAS
Google Scholar
Cooper LP, Roberts GA, White JH, Luyten YA, Bower EK, et al. DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus. Nucleic Acids Res. 2017;45(6):3395–406. https://doi.org/10.1093/nar/gkx067.
Article
Google Scholar
Sharma P, Reddy DP, Kumar PA, Gadicherla R, George N, et al. Draft genome sequence of a Staphylococcus aureus strain isolated from a cow with clinical mastitis. Genome Announc. 2015;3(4):e00914-e915. https://doi.org/10.1128/genomeA.00914-15.
Article
Google Scholar
Annamanedi M, Sheela P, Sundareshan S, Isloor S, Gupta P, et al. Molecular fingerprinting of bovine mastitis-associated Staphylococcus aureus isolates from India. Sci Rep. 2021;11(1):1–5. https://doi.org/10.1038/s41598-021-94760-x.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1):1–5. https://doi.org/10.1186/1471-2164-9-75.
Article
CAS
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Article
CAS
Google Scholar
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3. https://doi.org/10.1093/bioinformatics/btv421.
Article
CAS
Google Scholar
Chaudhari NM, Gupta VK, Dutta C. BPGA-an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6(1):1. https://doi.org/10.1038/srep24373.PMID:27071527;PMCID:PMC4829868.
Article
Google Scholar
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50(4):1355–61.
Article
CAS
Google Scholar
Jolley KA, Bray JE, Maiden MC. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Research. 2018;3. doi: https://doi.org/10.12688/wellcomeopenres.14826.1
Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, et al. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics. 2012;13(1):1. https://doi.org/10.1186/1471-2105-13-87.
Article
Google Scholar
Bionumerics, www.applied-maths.com, Accessed 27 Nov 2021
Bartels MD, Petersen A, Worning P, Nielsen JB, Larner-Svensson H, et al. Comparing whole-genome sequencing with Sanger sequencing for spa typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2014;52(12):4305–8. https://doi.org/10.1128/JCM.01979-14.
Article
CAS
Google Scholar
Center for Genomic Epidemiology, www.cge.cbs.dtu.dk/services/CSIPhylogeny Accessed 06 Dec 2021
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–9. https://doi.org/10.1093/nar/gkz239.
Article
CAS
Google Scholar
Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB, et al. SCC mec Finder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. Msphere. 2018;3(1):e00612-e617. https://doi.org/10.1128/mSphere.00612-17.
Article
Google Scholar
Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–25. https://doi.org/10.1093/nar/gkz935.
Article
CAS
Google Scholar
Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016;44(D1):D694–7. https://doi.org/10.1093/nar/gkv1239.
Article
CAS
Google Scholar
Murali TS, Paul B, Parikh H, Singh RP, Kavitha S, et al. Genome sequences of four clinical Staphylococcus aureus strains with diverse drug resistance profiles isolated from diabetic foot ulcers. Genome Announc. 2014;2(2):e00204-e214. https://doi.org/10.1128/genomeA.00204-14.
Article
Google Scholar
Li T, Lu H, Wang X, Gao Q, Dai Y, et al. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front Cell Infect Microbiol. 2017;7:127. https://doi.org/10.3389/fcimb.2017.00127.
Article
CAS
Google Scholar
Boss R, Cosandey A, Luini M, Artursson K, Bardiau M, et al. Bovine Staphylococcus aureus: Subtyping, evolution, and zoonotic transfer. J Dairy Sci. 2016;99(1):515–28. https://doi.org/10.3168/jds.2015-9589.
Article
CAS
Google Scholar
Leuenberger A, Sartori C, Boss R, Resch G, Oechslin F, et al. Genotypes of Staphylococcus aureus: On-farm epidemiology and the consequences for prevention of intramammary infections. J Dairy Sci. 2019;102(4):3295–309. https://doi.org/10.3168/jds.2018-15181.
Article
CAS
Google Scholar
Resch G, François P, Morisset D, Stojanov M, Bonetti EJ, et al. Human-to-bovine jump of Staphylococcus aureus CC8 is associated with the loss of a β-hemolysin converting prophage and the acquisition of a new staphylococcal cassette chromosome. PLoS ONE. 2013;8(3): e58187. https://doi.org/10.1371/journal.pone.0058187.
Article
CAS
Google Scholar
De Vliegher S, Fox LK, Piepers S, McDougall S, Barkema HW. Invited review: Mastitis in dairy heifers: Nature of the disease, potential impact, prevention, and control. J Dairy Sci. 2012;95(3):1025–40. https://doi.org/10.3168/jds.2010-4074.
Article
CAS
Google Scholar
Van Den Borne BH, Graber HU, Voelk V, Sartori C, Steiner A, et al. A longitudinal study on transmission of Staphylococcus aureus genotype B in Swiss communal dairy herds. Prev Vet Med. 2017;136:65–8. https://doi.org/10.1016/j.prevetmed.2016.11.008.
Article
Google Scholar
Sakwinska O, Giddey M, Moreillon M, Morisset D, Waldvogel A, et al. Staphylococcus aureus host range and human-bovine host shift. Appl Environ Microbiol. 2011;77(17):5908–15. https://doi.org/10.1128/AEM.00238-11.
Article
CAS
Google Scholar
Schmidt T, Kock MM, Ehlers MM. Molecular characterization of Staphylococcus aureus isolated from bovine mastitis and close human contacts in South African dairy herds: genetic diversity and inter-species host transmission. Front Microbiol. 2017;8:511. https://doi.org/10.3389/fmicb.2017.00511.
Article
Google Scholar
Nobrega DB, Naushad S, Naqvi SA, Condas LA, Saini V, et al. Prevalence and genetic basis of antimicrobial resistance in non-aureus staphylococci isolated from Canadian dairy herds. Front Microbiol. 2018;9:256. https://doi.org/10.3389/fmicb.2018.00256.
Article
Google Scholar
Bakour S, Sankar SA, Rathored J, Biagini P, Raoult D, et al. Identification of virulence factors and antibiotic resistance markers using bacterial genomics. Future Microbiol. 2016;11(3):455–66. https://doi.org/10.2217/fmb.15.149.
Article
CAS
Google Scholar
Nobrega DB, Naushad S, Naqvi SA, et al. Prevalence and genetic basis of antimicrobial resistance in non-aureus staphylococci isolated from Canadian dairy herds. Front Microbiol. 2018;9:256. https://doi.org/10.3389/fmicb.2018.00256.
Article
Google Scholar
Kot B, Piechota M, Wolska KM, Frankowska A, Zdunek E, et al. Phenotypic and genotypic antimicrobial resistance of staphylococci from bovine milk. Pol J Vet Sci. 2012;15(4):677–8. https://doi.org/10.2478/v10181-012-0105-4.
Article
CAS
Google Scholar
de Jong A, El Garch F, Simjee S, Moyaert H, Rose M, et al. Study Group. Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: VetPath results. Veterinary Microbiology. 2018;213:73–81. doi: https://doi.org/10.1016/j.vetmic.2017.11.021
Dufour D, Leung V, Lévesque CM. Bacterial biofilm: structure, function, and antimicrobial resistance. Endod Top. 2010;22(1):2–16. https://doi.org/10.1111/j.1601-1546.2012.00277.x.
Article
Google Scholar
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015;5:7. https://doi.org/10.3389/fcimb.2015.00007.
Article
CAS
Google Scholar
Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999;67(10):5427–33. https://doi.org/10.1128/IAI.67.10.5427-5433.1999.
Article
CAS
Google Scholar
Nguyen HT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J. 2020;18:3324–34. https://doi.org/10.1016/j.csbj.2020.10.027.
Article
CAS
Google Scholar
Akshatha BM, Isloor S, Sundareshan S, Veeresh BH, Nuthanalakshmi V, et al. Biofilm production, antibiotic resistance and the presence of ica, bap, agr and blaz genes in bovine mastitis-associated Staphylococcus aureus isolates from Karnataka. Indian J Comp Microbiol Immunol Infect Dis. 2020;41(1):39–49.
Google Scholar
Kim HK, Emolo C, DeDent AC, Falugi F, Missiakas DM, et al. Protein A-specific monoclonal antibodies and prevention of Staphylococcus aureus disease in mice. Infect Immun. 2012;80(10):3460–70. https://doi.org/10.1128/IAI.00230-12.
Article
CAS
Google Scholar
Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, et al. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol. 2011;144(3–4):270–89. https://doi.org/10.2174/1874285801711010053.
Article
CAS
Google Scholar
Pérez VK, da Costa GM, Guimarães AS, Heinemann MB, Lage AP, et al. Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. J Glob Antimicrob Resist. 2020;22:792–802. https://doi.org/10.1016/j.jgar.2020.06.010.
Article
Google Scholar
Pérez VK, Custódio DA, Silva EM, de Oliveira J, Guimarães AS, et al. Virulence factors and antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis in Brazil. Braz J Microbiol. 2020;51(4):2111–22. https://doi.org/10.1007/s42770-020-00363-5.
Article
CAS
Google Scholar
Bowman L, Palmer T. The type VII secretion system of Staphylococcus. Annu Rev Microbiol. 2021;75:471–94. https://doi.org/10.1146/annurev-micro-012721-123600.
Article
CAS
Google Scholar
Kengmo Tchoupa A, Watkins KE, Jones RA, Kuroki A, Alam MT, et al. The type VII secretion system protects Staphylococcus aureus against antimicrobial host fatty acids. Sci Rep. 2020;10(1):1–6. https://doi.org/10.1038/s41598-020-71653-z.
Article
CAS
Google Scholar
Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol. 2016;2(1):1–1. https://doi.org/10.1038/nmicrobiol.2016.183.
Article
CAS
Google Scholar