Todd EL, Poole RW. Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera Guenée from the Western hemisphere. Ann Entomol Soc Am. 1980;73(6):722–38.
Article
Google Scholar
Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and Central Africa. PLoS One. 2016;11(10):1–9.
Article
Google Scholar
Womack ED, Williams WP, Smith JS, Warburton ML, Bhattramakki D, Hesler L. Mapping quantitative trait loci for resistance to fall armyworm (Lepidoptera: Noctuidae) leaf-feeding damage in maize inbred Mp705. J Econ Entomol. 2020;113(2):956–63.
Article
CAS
Google Scholar
Tay WT, Rane R, Padovan A, Walsh T, Elfekih S, Downes S, et al. Whole genome sequencing of global Spodoptera frugiperda populations: evidence for complex, multiple introductions across the Old World. bioRxiv. 2020;2020.06.12.147660 Available from: http://biorxiv.org/content/early/2020/06/15/2020.06.12.147660.abstract.
Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomol. 2018;26(2):286–300.
Article
Google Scholar
Abrahams AP, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, et al. Fall armyworm: impacts and implications for Africa: CABI; 2017.
Devi S. Fall armyworm threatens food security in southern Africa. Lancet (London, England). 2018;391(10122):727.
Article
Google Scholar
Chhetri LB, Acharya B. Fall armyworm (Spodoptera frugiperda): a threat to food security for south Asian country: control and management options: a review. Farming Manag. 2019;4(1):38–44.
Luginbill P. The fall army worm. Nature. 1928;121(3054):770–1.
Google Scholar
Vickery RA. Studies on the fall armyworm in the gulf coast district of Texas 1929;(138):0–64.
Google Scholar
Bessin R, Entomologist E. Fall armyworm in corn; 2004. p. 1–2. Available from: https://entomology.ca.uky.edu/ef110
Google Scholar
Prasanna B, Huesing JE, Eddy R, Peschke VM. Fall armyworm in Africa: a guide for integrated Pest management. First edit., editor. Mexico: USAID; CIMMYT; 2018. Available from: https://www.usaid.gov/sites/default/files/documents/1867/Fall-Armyworm-IPM-Guide-for-Africa-Jan_30-2018.pdf
Google Scholar
Rwomushana I, Bateman M, Beale T, Beseh P, Cameron K, Chiluba M, et al. Fall armyworm: impacts and implications for Africa, evidence note update, October 2018: CABI europe; 2018.
Google Scholar
FAO. Enhancing national capacity for the management of Fall armyworm (FAW): Focus in Uganda. FAO Represent Uganda, NC-SA 30 IGO licence. 2018;
Prasanna BM, Huesing JE, Peschke V. Fall armyworm in Africa : fall armyworm in Africa; 2018.
Google Scholar
Pashley DP. Quantitative genetics, development and physiological adaptation in host strains of fall armyworm. Evolution (N Y). 1988;42(1):93 Available from: https://www.jstor.org/stable/2409118?origin=crossref.
Google Scholar
Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C. Investigating the molecular mechanisms of organophosphate and Pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One. 2013;8(4).
Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A, Murúa MG, et al. Fall armyworm migration across the lesser antilles and the potential for genetic exchanges between north and south American populations. PLoS One. 2017;12(2):1–18.
Article
Google Scholar
Nagoshi RN, Koffi D, Agboka K, Tounou KA, Banerjee R, Jurat-Fuentes JL, et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the greater Antilles. PLoS One. 2017;12(7):1–15.
Article
Google Scholar
Laura Juárez M, Gabriela Murúa M, Gabriela García M, Ontivero M, Teresa Vera M, Vilardi JC, et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J Econ Entomol. 2012;105(2):573–82.
Article
Google Scholar
Nagoshi RN, Goergen G, Tounou KA, Agboka K, Koffi D, Meagher RL. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern sub-Saharan Africa. Sci Rep. 2018;8(1):1–10. https://doi.org/10.1038/s41598-018-21954-1.
Article
CAS
Google Scholar
Otim MH, Tay WT, Walsh TK, Kanyesigye D, Adumo S, Abongosi J, et al. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLoS One. 2018;13(4):1–18.
Article
Google Scholar
Nagoshi RN. Evidence that a major subpopulation of fall armyworm found in the Western hemisphere is rare or absent in Africa, which may limit the range of crops at risk of infestation; 2019. p. 1–18.
Google Scholar
Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, Nagoshi BY, et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci Rep. 2020:1–10. https://doi.org/10.1038/s41598-020-58249-3.
Nagoshi RN. The fall armyworm triose phosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol Soc Am. 2010;103(2):283–92.
Article
CAS
Google Scholar
Acharya R, Akintola AA, Malekera MJ, Kamulegeya P, Nyakunga KB, Mutimbu MK, et al. Genetic relationship of fall armyworm (Spodoptera frugiperda) populations that invaded Africa and Asia; 2021. p. 1–15. Journal????
Google Scholar
Nagoshi RN, Goergen G, Du PH, van den Berg J, Meagher R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep. 2019;9(1):8311 Available from: http://www.nature.com/articles/s41598-019-44744-9.
Article
Google Scholar
Nagoshi RN, Dhanani I, Asokan R, Mahadevaswamy HM, Kalleshwaraswamy CM, RLM S. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population; 2019. p. 1–16.
Google Scholar
Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, et al. Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS One. 2015;10(4):1–12.
Article
Google Scholar
Signorini AM, Abratti G, Grimi D, Machado M, Bunge FF, Parody B, et al. Management of field-evolved resistance to Bt maize in Argentina: a multi-institutional approach. Front Bioeng Biotechnol. 2018;6(May):1–5 Available from: https://www.frontiersin.org/article/10.3389/fbioe.2018.00067/full.
Google Scholar
Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol. 2010;103(4):1031–8.
Article
Google Scholar
Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S, et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China; 2020. p. 1682–96. Journal
Google Scholar
Chandrasena DI, Signorini AM, Abratti G, Storer NP, Olaciregui ML, Alves AP, et al. Characterization of field-evolved resistance to bacillus thuringiensis-derived Cry1F δ-endotoxin in Spodoptera frugiperda populations from Argentina. Pest Manag Sci. 2018;74(3):746–54.
Article
CAS
Google Scholar
Gutiérrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H, Rodriguez-Maciel JC, et al. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J Econ Entomol. 2018;(X):toy372–2. https://doi.org/10.1093/jee/toy372.
Huang F, Portilla M, Zhu YC, Luttrell R, Adamczyk J, Blanco CA. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pestic Biochem Physiol. 2015;122:15–21. https://doi.org/10.1016/j.pestbp.2015.01.007.
Article
CAS
Google Scholar
Tefera T, Mendesil E, Sisay B, Wakgari M, Ayalew G. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects. 2019;10(2):45.
Article
Google Scholar
Guan F, Zhang J, Shen H, Wang X, Padovan A, Walsh TK, et al. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci. 2021;28(3):627–38.
Article
CAS
Google Scholar
Nagoshi RN, Brambila J, Meagher RL. Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J Insect Sci. 2012;11(154):1–11.
Article
Google Scholar
Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact. 2005;157–158:257–61.
Article
Google Scholar
García-Aguirre KK, Rivera G, Bello-Ruiz DG, Segovia-Tagle V, Paredes-Sánchez FA, Lara-Ramírez EE, et al. Identification of Snp’s in the Ace-1 gene of Spodoptera frugiperda associated with resistance to Organophosphorus insecticides. Southwest Entomol. 2018;43(4):855–65.
Article
Google Scholar
FAO. Integrated management of the fall armyworm on maize. A guide for farmer Field schools in Africa; 2018. Available from: http://www.fao.org/3/I8665EN/i8665en.pdf
Google Scholar
Nagoshi RN, Meagher RL, Flanders K, Gore J, Jackson R, Lopez J, et al. Using haplotypes to monitor the migration of fall armyworm (Lepidoptera : Noctuidae) corn-strain populations from Texas and Florida. Proteins. 2008;742–9.
Dos Santos DA, Vilardi JC, Hay-Roe MM, Nagoshi RN, Meagher RL, Murúa MG. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J Econ Entomol. 2015;108(5):2305–15.
Article
Google Scholar
Nayyar N, Gracy RG, Ashika TR, Mohan G, Swathi RS, Mohan M. Population structure and genetic diversity of invasive fall armyworm after 2 years of introduction in India. Sci Rep. 2021:1–12. https://doi.org/10.1038/s41598-021-87414-5.
Nagoshi RN, Nagoshi BY, Ca E, Id BN. Genetic characterization of fall armyworm (Spodoptera frugiperda) in Ecuador and comparisons with regional populations identify likely migratory relationships. PLoS One. 2019;1–17.
Murúa MG, Nagoshi RN, Santos DAD, Hay-Roe MM, Meagher RL, Vilardi JC. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J Econ Entomol. 2015;108(5):2305–15.
Article
Google Scholar
Williamson MS, Moores GD. Identification of mutations conferring insecticide- insensitive AChE in the cotton-melon aphid, Aphis gossypii. Glover. 2004;13:555–61.
Google Scholar
Jiang X, Qu M, Denholm I, Fang J, Jiang W, Han Z. Mutation in acetylcholinesterase1 associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Biochem Biophys Res Commun. 2009;378(2):269–72. https://doi.org/10.1016/j.bbrc.2008.11.046.
Article
CAS
Google Scholar
Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL, et al. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J. 2001;181:175–81.
Article
Google Scholar
Cassanelli S, Reyes M, Rault M, Carlo Manicardi G, Sauphanor B. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). Insect Biochem Mol Biol. 2006;36(8):642–53.
Article
CAS
Google Scholar
Nagoshi RN, Fleischer S, Meagher RL. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J Econ Entomol. 2017;110(6):2568–75.
Article
CAS
Google Scholar
Yainna S, Nicolas N, Silvie PJ, Br T, Tay WT, Gordon K, et al. Geographic monitoring of insecticide resistance mutations in native and invasive populations of the fall armyworm. Insects. 2021;12(5):468, 1–12. https://doi.org/10.3390/insects12050468.
Walsh PS, Metzger DA, Higuchi R. Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991;10(4):506–13.
CAS
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Article
CAS
Google Scholar
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302.
Article
CAS
Google Scholar
Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6(9):1110–6.
Article
Google Scholar
Röhl A, Bandelt HJ, Forster P. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48.
Article
Google Scholar
Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, Marchler-Bauer A. Database resources of the national center for biotechnology information. Nucleic acids research. 2021;49(D1):D10. Database resources of the National Center for Biotechnology Information - PMC (nih.gov).
Biomatters. Geneious prime 2022.1 user manual. Data Base. 2013;3304(January):1–148.
Google Scholar
Moores GD, Gao X, Denholm I, Devonshire AL. Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii glover (Homoptera: Aphididae). Pestic Biochem Physiol. 1996;56(2):102–10.
Article
CAS
Google Scholar
Zhang L, Liu B, Zheng W, Liu C, Zhang D, Zhao S. High-depth resequencing reveals hybrid population and insecticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading ChinabioRxiv; 2019.
Book
Google Scholar
Yainna S, Tay WT, Fiteni E, Legeai F, Clamens AL, Gimenez S, et al. Genomic balancing selection is key to the invasive success of the fall armyworm. bioRxiv. 2020:1–32.
Peakall R, Smouse PE. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288–95.
Article
Google Scholar
Peakall R, Smouse PE. GenALEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28(19):2537–9.
Article
CAS
Google Scholar
Wu S, Zuo K, Kang Z, Yang Y, Oakeshott JG, Wu Y. A point mutation in the acetylcholinesterase-1 gene is associated with chlorpyrifos resistance in the plant bug Apolygus lucorum. Insect Biochem Mol Biol. 2015;65:75–82. https://doi.org/10.1016/j.ibmb.2015.09.005.
Article
CAS
Google Scholar
Sindhu T, Venkatesan T, Prabhu D, Jeyakanthan J, Gracy GR, Jalali SK, et al. Insecticide-resistance mechanism of Plutella xylostella (L.) associated with amino acid substitutions in acetylcholinesterase-1: a molecular docking and molecular dynamics investigation. Comput Biol Chem. 2018;77(September):240–50. https://doi.org/10.1016/j.compbiolchem.2018.09.004.
Article
CAS
Google Scholar