Hoch JA, Silhavy TJ, eds: Two-component signal transduction. 1995, Washington DC: ASM Press
Google Scholar
Inouye M, Dutta R, eds: Histidine Kinases in Signal Transduction. 2003, New York: Academic Press
Google Scholar
Alex LA, Simon MI: Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet. 1994, 10: 133-138. 10.1016/0168-9525(94)90215-1.
Article
CAS
PubMed
Google Scholar
Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Annu Rev Biochem. 2000, 69: 183-215. 10.1146/annurev.biochem.69.1.183.
Article
CAS
PubMed
Google Scholar
Wolanin P, Thomason PA, Stock JB: Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. 2002, 3: 3013-10.1186/gb-2002-3-10-reviews3013.
Article
Google Scholar
Mizuno T: Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 1997, 4: 161-168. 10.1093/dnares/4.2.161.
Article
CAS
PubMed
Google Scholar
Beier D, Gross R: Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol. 2006, 9: 1-10. 10.1016/j.mib.2006.01.005.
Article
Google Scholar
Lavin JL, Kiil K, Resano O, Ussery DW, Oguiza JA: Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae. BMC Genomics. 2007, 8: 397-10.1186/1471-2164-8-397.
Article
PubMed Central
PubMed
Google Scholar
Qian W, Han Z, He C: Two-component signal transduction systems of Xanthomonas spp.: A lesson from genomics. Mol Plant-Microbe Interact. 2008, 21: 151-161. 10.1094/MPMI-21-2-0151.
Article
CAS
PubMed
Google Scholar
Mole BM, Baltrus DA, Dangl JL, Grant SR: Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol. 2007, 15: 363-371. 10.1016/j.tim.2007.06.005.
Article
CAS
PubMed
Google Scholar
Brencic A, Winans SC: Detection and response to signals involved in host-microbe interactions by plant associated bacteria. Microbiol Mol Biol Rev. 2005, 69: 155-194. 10.1128/MMBR.69.1.155-194.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heeb S, Haas D: Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact. 2001, 14: 1351-1363. 10.1094/MPMI.2001.14.12.1351.
Article
CAS
PubMed
Google Scholar
Qian W, Han Z, Tao J, He C: Genome-scale mutagenesis and phenotypic characterization of two-component signal transductions of Xanthomonas campestris pv. campestris ATCC33913. Mol Plant-Microbe Interact. 2008, 21: 1128-1138. 10.1094/MPMI-21-8-1128.
Article
CAS
PubMed
Google Scholar
Vanneste JL, ed: Fire blight, the disease and its causative agent, Erwinia amylovora. 2000, Wallingford UK: CABI Publ
Google Scholar
He SY, Nomura K, Whittam TS: Type III protein secretion mechanism in mammalian and plant pathogens. Biochem Biophys Acta. 2004, 1694: 181-206. 10.1016/j.bbamcr.2004.03.011.
Article
CAS
PubMed
Google Scholar
Oh CS, Beer SV: Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Let. 2005, 253: 185-192. 10.1016/j.femsle.2005.09.051.
Article
CAS
Google Scholar
Wang DP, Korban SS, Zhao YF: The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol Plant Pathol. 2009, 10: 277-290. 10.1111/j.1364-3703.2008.00531.x.
Article
CAS
PubMed
Google Scholar
Wei ZM, Kim JF, Beer SV: Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two component system, and HrpS. Mol Plant-Microbe Interact. 2000, 13: 1251-1262. 10.1094/MPMI.2000.13.11.1251.
Article
CAS
PubMed
Google Scholar
Zhao YF, Blumer SE, Sundin GW: Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol. 2005, 187: 8088-8103. 10.1128/JB.187.23.8088-8103.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lapouge K, Schubert M, Allain FHT, Haas D: Gac/Rsm signal transduction pathways of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol. 2008, 67: 241-253.
Article
CAS
PubMed
Google Scholar
Forst S, Delgado J, Inouye M: Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc Natl Acad Sci USA. 1989, 86: 6052-6056. 10.1073/pnas.86.16.6052.
Article
PubMed Central
CAS
PubMed
Google Scholar
Park D, Forst S: Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabus nematophila. Mol Microbiol. 2006, 61: 1397-1412. 10.1111/j.1365-2958.2006.05320.x.
Article
CAS
PubMed
Google Scholar
Feng X, Oropeza R, Kenney LJ: Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol Microbiol. 2003, 48: 1131-1143. 10.1046/j.1365-2958.2003.03502.x.
Article
CAS
PubMed
Google Scholar
Garmendia J, Beuzon CR, Ruiz-Albert J, Holden DW: The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology. 2003, 149: 2385-2396. 10.1099/mic.0.26397-0.
Article
CAS
PubMed
Google Scholar
Kim CC, Falkow S: Delineation of upstream signaling events in the Salmonella pathogenicity island 2 transcriptional activation pathway. J Bacteriol. 2004, 186: 4694-4704. 10.1128/JB.186.14.4694-4704.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee AK, Detweiler CS, Falkow S: OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol. 2000, 182: 771-781. 10.1128/JB.182.3.771-781.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brzostek K, Brzostkowska M, Bukowska I, Karwicka E, Raczkowska A: OmpR negatively regulates expression of invasion in Yersinia enterocolitica. Microbiology. 2007, 153: 2416-2425. 10.1099/mic.0.2006/003202-0.
Article
CAS
PubMed
Google Scholar
Xiao Y, Lan L, Yin C, Deng X, Baker D, Zhou J, Tang X: Two-component sensor RhpS promoters induction of Pseudomonas syringae type III secretion system by repressing negative regulator RhpR. Mol Plant-Microbe Interact. 2007, 20: 223-234. 10.1094/MPMI-20-3-0223.
Article
CAS
PubMed
Google Scholar
Yang S, Peng Q, Zhang Q, Yi X, Choi CJ, Reedy RM, Charkowski AO, Yang C: Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937). Mol Plant-Microbe Interact. 2008, 21: 133-142. 10.1094/MPMI-21-1-0133.
Article
CAS
PubMed
Google Scholar
Lebeau A, Reverchon S, Gaubert S, Kraepiel Y, Simond-Cote E, Nasser W, Gijsegem F: The GacA global regulator is required for the appropriate expression of Erwinia chrysanthemi 3937 pathogenicity genes during plant infection. Environ Microbiol. 2008, 10: 545-559. 10.1111/j.1462-2920.2007.01473.x.
Article
CAS
PubMed
Google Scholar
Marutani M, Taguchi F, Ogawa Y, Hossain Md M, Inagaski Y, Toyoda K, Shiraishi T, Ichinose Y: Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Mol Genet Genomics. 2008, 279: 313-322. 10.1007/s00438-007-0309-y.
Article
CAS
PubMed
Google Scholar
Cui Y, Chatterjee A, Yang H, Chatterjee AK: Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J Bacteriol. 2008, 190: 4610-4623. 10.1128/JB.01828-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK: GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternative sigma factors. Mol Plant-Microbe Interact. 2003, 16: 1106-1117. 10.1094/MPMI.2003.16.12.1106.
Article
CAS
PubMed
Google Scholar
Tang X, Xiao Y, Zhou J: Regulation of the Type III secretion system in phytopathogenic bacteria. Mol Plant-Microbe Interact. 2006, 19: 1159-1166. 10.1094/MPMI-19-1159.
Article
CAS
PubMed
Google Scholar
Yang S, Peng Q, Francisco MS, Wang Y, Zeng Q, Yang C: Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS One. 2008, 3: e2973-10.1371/journal.pone.0002973.
Article
PubMed Central
PubMed
Google Scholar
Gonzalez N, Heeb S, Valverde C, Reimmann C, Junier T, Haas D: Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics. 2008, 9: 167-10.1186/1471-2164-9-167.
Article
PubMed Central
PubMed
Google Scholar
Bocsanczy AM, Perna NT, Biehl B, Glasner JD, Cartinhour SW, Schneider DJ, DeClerck GA, Sebaihia M, Parkhill J, Bentley S, Beer SV: Contributions of the genome sequence of Erwinia amylovora to the fire blight community. Acta Hortic. 2008, 793: 163-170.
Article
CAS
Google Scholar
Kube M, Migdoll AM, Muller I, Kuhl H, Beck A, Reinhardt R, Geider K: The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. Environ Microbiol. 2008, 10: 2211-2222. 10.1111/j.1462-2920.2008.01639.x.
Article
CAS
PubMed
Google Scholar
Yap MN, Yang C, Charkowski AO: The response regulator HrpY of Dickeya dadantii 3937 regulates virulence genes not linked to the hrp cluster. Mol Plant-Microbe Interact. 2008, 21: 304-314. 10.1094/MPMI-21-3-0304.
Article
CAS
PubMed
Google Scholar
Kim D, Forst S: Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology. 2001, 147: 1197-1212.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, et al: CDD: A Conserved Domain Database for protein classification. Nucleic Acids Res. 2005, 33: D192-D196. 10.1093/nar/gki069.
Article
PubMed Central
CAS
PubMed
Google Scholar
Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART 5: Domains in the context of genomes and networks. Nucleic Acids Res. 2006, 34: D257-D260. 10.1093/nar/gkj079.
Article
PubMed Central
CAS
PubMed
Google Scholar
Galperin MY: Structural classification of bacterial response regulators: Diversity of output domains and domain combinations. J Bacteriol. 2006, 188: 4169-4182. 10.1128/JB.01887-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fouhy Y, Lucey JF, Ryan RP, Dow JM: Cell-cell signaling, cyclic di-GMP turnover and regulation of virulence in Xanthomonas campestris. Res Microbiol. 2006, 157: 899-904. 10.1016/j.resmic.2006.08.001.
Article
CAS
PubMed
Google Scholar
Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000, 97: 6640-6645. 10.1073/pnas.120163297.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao YF, He SY, Sundin GW: The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant-Microbe Interact. 2006, 19: 644-654. 10.1094/MPMI-19-0644.
Article
CAS
PubMed
Google Scholar
Zhao YF, Sundin GW, Wang DP: Construction and analysis of pathogenicity island deletion mutants of Erwinia amylovora. Can J Microbiol. 55: 457-464. 10.1139/W08-147.
Bogdanove AJ, Bauer DW, Beer SV: Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J Bacteriol. 1998, 180: 2244-2247.
PubMed Central
CAS
PubMed
Google Scholar
Bereswill S, Geider K: Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen. J Bacteriol. 1997, 179: 1354-61.
PubMed Central
CAS
PubMed
Google Scholar
Hildebrand M, Aldridge P, Geider K: Characterization of hns genes from Erwinia amylovora. Mol Genet Genomics. 2006, 275: 310-319. 10.1007/s00438-005-0085-5.
Article
CAS
PubMed
Google Scholar
Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT: Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: A system-level analysis. PLoS Biol. 2005, 3: e334-10.1371/journal.pbio.0030334.
Article
PubMed Central
PubMed
Google Scholar
Bellemann P, Bereswill S, Berger S, Geider K: Visualization of capsule formation by Erwinia amylovora and assays to determine amylovoran synthesis. Int J Biol Macromol. 1994, 16: 290-296. 10.1016/0141-8130(94)90058-2.
Article
CAS
PubMed
Google Scholar
Toth IK, Pritchard L, Birch PRJ: Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol. 2005, 44: 305-306. 10.1146/annurev.phyto.44.070505.143444.
Article
Google Scholar
Majdalani N, Gottesman S: The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol. 2006, 59: 379-405. 10.1146/annurev.micro.59.050405.101230.
Article
Google Scholar
D'Souza M, Glass EM, Syed M, Zhang Y, Rodriguez A, Maltsev N, Galperin MY: Sentra: a database of signal transduction proteins for comparative genome analysis. Nucleic Acids Res. 2007, 35: D271-273. 10.1093/nar/gkl949.
Article
PubMed Central
PubMed
Google Scholar
Galperin MY: Bacterial signal transduction network in a genomic perspective. Environ Microbiol. 2004, 6: 552-567. 10.1111/j.1462-2920.2004.00633.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ulrich LE, Zhulin IB: MiST: a microbial signal transduction database. Nucleic Acids Res. 2007, 35: D386-390. 10.1093/nar/gkl932.
Article
PubMed Central
CAS
PubMed
Google Scholar
Galperin MY, Nikolskaya AN, Koonin EV: Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett. 2001, 203: 11-21. 10.1111/j.1574-6968.2001.tb10814.x.
Article
CAS
PubMed
Google Scholar
Nissien RM, Ytterberg AJ, Bogdanove AJ, van Wijk KJ, Beer SV: Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol. 2007, 8: 55-67. 10.1111/j.1364-3703.2006.00370.x.
Article
Google Scholar
Oh CS, Kin JY, Beer SV: The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol. 2005, 6: 125-138. 10.1111/j.1364-3703.2005.00269.x.
Article
CAS
PubMed
Google Scholar
Merighi M, Majerczak DR, Stover EH, Coplin DL: The HrpX/Y two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii. Mol Plant-Microbe Interact. 2003, 16: 238-248. 10.1094/MPMI.2003.16.3.238.
Article
CAS
PubMed
Google Scholar
Merighi M, Majerczak DR, Coplin DL: A novel transcriptional autoregulatory loop enhances expression of the Pantoea stewartii subsp. stewartii Hrp Type III secretion system. FEMS Microbiol Lett. 2005, 243: 479-487. 10.1016/j.femsle.2005.01.009.
Article
CAS
PubMed
Google Scholar
Merighi M, Majerczak DR, Zianni M, Tessanne K, Coplin DL: Molecular characterization of Pantoea stewartii subsp. stewartii HrpY, a conserved response regulator of the hrp type III secretion system, and its interaction with the hrpS promoter. J Bacteriol. 2006, 188: 5089-5100. 10.1128/JB.01929-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lan L, Deng X, Zhou J, Tang X: Genome-wide gene expression analysis of Pseudomonas syringae pv. tomato DC3000 reveals overlapping and distinct pathways regulated by hrpL and hrpRS. Mol Plant-Microbe Interact. 2006, 19: 976-987. 10.1094/MPMI-19-0976.
Article
CAS
PubMed
Google Scholar
Kelm O, Kiecker C, Geider K, Bernhard F: Interaction of the regulator proteins RcsA and RcsB with the promoter of the operon for amylovoran biosynthesis in Erwinia amylovora. Mol Gen Genet. 1997, 256: 72-83. 10.1007/s004380050547.
Article
CAS
PubMed
Google Scholar
Fraser GM, Hughes C: Swarming motility. Curr Opin Microbiol. 1999, 2: 630-635. 10.1016/S1369-5274(99)00033-8.
Article
CAS
PubMed
Google Scholar
Harshey RM: Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003, 57: 249-273. 10.1146/annurev.micro.57.030502.091014.
Article
CAS
PubMed
Google Scholar
Jarrell KF, McBride MJ: The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol. 2008, 6: 466-476. 10.1038/nrmicro1900.
Article
CAS
PubMed
Google Scholar
Kaiser D: Bacterial swarming: a re-examination of cell movement patterns. Curr Biol. 2007, 17: R561-R570. 10.1016/j.cub.2007.04.050.
Article
CAS
PubMed
Google Scholar
Overhage J, Bains M, Brazas MD, Hancock RE: Swarming of Pseudomonas aeroginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol. 2008, 190: 2671-2679. 10.1128/JB.01659-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
McCarter LL: Regulation of flagella. Curr Opin Microbiol. 2006, 9: 180-186. 10.1016/j.mib.2006.02.001.
Article
CAS
PubMed
Google Scholar
Wang Q, Suzuki A, Mariconda S, Porwollik S, Harshy RM: Sensing wetness: a new role for the bacterial flagellum. EMBO J. 2005, 24: 2034-2042. 10.1038/sj.emboj.7600668.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lai S, Tremblay J, Deziel E: Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009, 11 (1): 126-36. 10.1111/j.1462-2920.2008.01747.x.
Article
CAS
PubMed
Google Scholar
Chen BG, Turner L, Berg HC: The wetting agent required for swarming in Salmonella enterica serovar Typhimurium is not a surfactant. J Bacteriol. 2007, 189: 8750-8753. 10.1128/JB.01109-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Torriani A: Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960, 38: 460-479. 10.1016/0006-3002(60)91281-6.
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 1989, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol. 2001, 305: 567-580. 10.1006/jmbi.2000.4315.
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed Central
CAS
PubMed
Google Scholar
Galperin MY, Nikolskaya AN: Identification of sensory and signal-transducing domains in two-component signaling systems. Methods Enzymol. 2007, 422: 47-74. 10.1016/S0076-6879(06)22003-2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burse A, Weingart H, Ullrich MS: NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl Environ Microbiol. 2004, 70: 693-703. 10.1128/AEM.70.2.693-703.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang RF, Kushner SR: Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991, 100: 195-199. 10.1016/0378-1119(91)90358-I.
Article
CAS
PubMed
Google Scholar
Valdivia RH, Falkow S: Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 1997, 277: 2007-2011. 10.1126/science.277.5334.2007.
Article
CAS
PubMed
Google Scholar