Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P: Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol. 2009, 59: 102-111. 10.1099/ijs.0.001123-0.
Article
CAS
PubMed
Google Scholar
Burkholder WH: Sour skin, a bacterial rot of onion bulbs. Phytopathology. 1950, 40: 115-117.
Google Scholar
Jones AM, Dodd ME, Webb AK: Burkholderia cepacia: current clinical issues, environmental controversies and ethical dilemmas. Eur Respir J. 2001, 17: 295-301. 10.1183/09031936.01.17202950.
Article
CAS
PubMed
Google Scholar
Burns JL: Antibiotic resistance of Burkholderia spp. Burkholderia: Molecular Microbiology and Genomics. Edited by: Coenye T, Vandamme P. 2007, Norfolk: Horizon Bioscience, 81-91.
Google Scholar
Mahenthiralingam E, Urban TA, Goldberg JB: The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol. 2005, 3: 144-156. 10.1038/nrmicro1085.
Article
CAS
PubMed
Google Scholar
Saiman L, Siegel J: Infection control in cystic fibrosis. Clin Microbiol Rev. 2004, 17: 57-71. 10.1128/CMR.17.1.57-71.2004.
Article
PubMed Central
PubMed
Google Scholar
Peeters A, Nelis HJ, Coenye T: Evaluation of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect. 2008, 70: 361-368. 10.1016/j.jhin.2008.08.015.
Article
CAS
PubMed
Google Scholar
McDonald KJ, Speert DP: Interaction of Burkholderia species with the phagocytic system. Burkholderia: Molecular Microbiology and Genomics. Edited by: Coenye T, Vandamme P. 2007, Norfolk: Horizon Bioscience, 111-127.
Google Scholar
Imlay JA: Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem. 2008, 77: 755-776. 10.1146/annurev.biochem.77.061606.161055.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dukan S, Touati D: Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol. 1996, 178: 6145-6150.
CAS
PubMed Central
PubMed
Google Scholar
Jimenez L: Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Technol. 2007, 61: 383-399.
CAS
PubMed
Google Scholar
Lefebre MD, Flannagan RS, Valvano MA: A minor catalase/peroxidase from Burkholderia cenocepacia is required for normal aconitase activity. Microbiology. 2005, 151: 1975-1985. 10.1099/mic.0.27704-0.
Article
CAS
PubMed
Google Scholar
Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, Thomson NR, Bason N, Quail MA, Sharp S, Cherevach I, Churcher C, Goodhead I, Hauser H, Holroyd N, Mungall K, Scott P, Walker D, White B, Rose H, Iversen P, Mil-Homens D, Rocha EP, Fialho AM, Baldwin A, Dowson C, Barrell BG, Govan JR, Vandamme P, Hart CA, Mahenthiralingam E, Parkhill J: The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009, 191: 261-277. 10.1128/JB.01230-08.
Article
CAS
PubMed Central
PubMed
Google Scholar
Drevinek P, Holden MT, Ge Z, Jones AM, Ketchell I, Gill RT, Mahenthiralingam E: Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BMC Infect Dis. 2008, 8: 121-10.1186/1471-2334-8-121.
Article
PubMed Central
PubMed
Google Scholar
Zheng M, Wang X, Templeton LJ, Smulski DR, Larossa RA, Storz G: DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol. 2001, 183: 4562-4570. 10.1128/JB.183.15.4562-4570.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Palma M, DeLuca D, Worgall S, Quadri LEN: Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol. 2004, 186: 248-252. 10.1128/JB.186.1.248-252.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chang W, Small DA, Toghrol F, Bently WE: Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics. 2005, 6: 115-10.1186/1471-2164-6-115.
Article
PubMed Central
PubMed
Google Scholar
Salunke P, Töpfer T, Buer J, Tümmler B: Genome-wide transcriptional profiling of the steady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol. 2005, 187: 2565-2572. 10.1128/JB.187.8.2565-2572.2005.
Article
Google Scholar
Stohl EA, Criss AK, Seifert HS: The transcriptome response of Neisseria gonorrhoeae to hydrogen peroxide reveals genes with previously uncharacterized roles in oxidative damage protection. Mol Microbiol. 2005, 58: 520-532. 10.1111/j.1365-2958.2005.04839.x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Harrison A, Ray WC, Baker BD, Armbuster DW, Bakaletz LO, Munson RS: The OxyR regulon in nontypable Haemophilus influenzae. J Bacteriol. 2007, 189: 1004-1012. 10.1128/JB.01040-06.
Article
CAS
PubMed Central
PubMed
Google Scholar
Small DA, Chang W, Toghrol F, Bentley WE: Comparative global transcription analysis of sodium hypochlorite, peracetic acid and hydrogen peroxide on Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2007, 76: 1093-1105. 10.1007/s00253-007-1072-z.
Article
CAS
PubMed
Google Scholar
Bsat N, Chen L, Helmann JD: Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol. 1996, 178: 6579-6586.
CAS
PubMed Central
PubMed
Google Scholar
Elkins JG, Hassett DJ, Stewart PS, Schweizer HP, McDermott TR: Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol. 1999, 65: 4594-4600.
CAS
PubMed Central
PubMed
Google Scholar
Rocha ER, Smith CJ: Role of the alkyl hydroperoxide reductase (ahpCF) genes in oxidative stress defence of the obligate anaerobe Bacteriodes fragilis. J Bacteriol. 1999, 181: 5701-5710.
CAS
PubMed Central
PubMed
Google Scholar
Howell ML, Alsabbagh E, Ma JF, Ochsner UA, Klotz MG, Beveridge TJ, Blumenthal KM, Niederhoffer EC, Morris RE, Needham D, Dean GE, Wani MA, Hassett DJ: AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol. 2000, 182: 4545-4556. 10.1128/JB.182.16.4545-4556.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ochsner UA, Hassett DJ, Vasil ML: Genetic and physiological characterization of ohr, encoding a protein involved in organic hydroperoxide resistance in Pseudomonas aeruginosa. J Bacteriol. 2001, 183: 773-778. 10.1128/JB.183.2.773-778.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Seaver LC, Imlay JA: Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol. 2001, 183: 7173-7181. 10.1128/JB.183.24.7173-7181.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lau GW, Britigan BE, Hassett DJ: Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect Immun. 2005, 73: 2550-2553. 10.1128/IAI.73.4.2550-2553.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Watnick P, Kolter R: Biofilm, city of microbes. J Bacteriol. 2000, 182: 2675-2679. 10.1128/JB.182.10.2675-2679.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chung JW, Speert DP: Proteomic identification and characterization of bacterial factors associated with Burkholderia cenocepacia survival in a murine host. Microbiology. 2007, 153: 206-214. 10.1099/mic.0.2006/000455-0.
Article
CAS
PubMed
Google Scholar
Peeters E, Nelis HJ, Coenye T: Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008, 72: 157-165. 10.1016/j.mimet.2007.11.010.
Article
CAS
PubMed
Google Scholar
Lushchak : Oxidative stress and mechanisms of protection against it in bacteria. Biokhimiya. 2001, 66: 592-609.
Google Scholar
Mongkolsuk S, Helmann JD: Regulation of inducible peroxide stress responses. Mol Microbiol. 2002, 45: 9-15. 10.1046/j.1365-2958.2002.03015.x.
Article
CAS
PubMed
Google Scholar
Zeller T, Klug G: Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften. 2006, 93: 259-266. 10.1007/s00114-006-0106-1.
Article
CAS
PubMed
Google Scholar
Atichartpongkul S, Loprasert S, Vattanaviboon P, Whangsuk W, Helmann JD, Mongkolsuk S: Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology. 2001, 147: 1775-1782.
Article
CAS
PubMed
Google Scholar
Sukchawalit R, Loprasert S, Atichartpongkul A, Mongkolsuk S: Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide inducible negative regulator, and posttranscriptional modifications. J Bacteriol. 2001, 183: 4405-4412. 10.1128/JB.183.15.4405-4412.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lesniak J, Barton WA, Nikolov DB: Structural and functional characterization of the Pseudomonas hydroperoxide resistance protein Ohr. EMBO J. 2002, 21: 6649-6659. 10.1093/emboj/cdf670.
Article
CAS
PubMed Central
PubMed
Google Scholar
Coenye T, Peeters E, Nelis HJ: Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res Microbiol. 2007, 158: 386-392. 10.1016/j.resmic.2007.02.001.
Article
CAS
PubMed
Google Scholar
Storz G, Imlay JA: Oxidative stress. Curr Opin Microbiol. 1999, 2: 188-194. 10.1016/S1369-5274(99)80033-2.
Article
CAS
PubMed
Google Scholar
Imlay JA, Linn S: Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol. 1987, 169: 2967-2976.
CAS
PubMed Central
PubMed
Google Scholar
Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S: DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol. 2004, 182: 96-101. 10.1007/s00203-004-0694-0.
Article
CAS
PubMed
Google Scholar
Altuvia S, Almiron M, Huisman G, Kolter R, Storz G: The dps promotor is activated by OxyR during growth and by IHF and a sigma(S) in stationary phase. Mol Microbiol. 1994, 13: 265-272. 10.1111/j.1365-2958.1994.tb00421.x.
Article
CAS
PubMed
Google Scholar
Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R: Genome-wide analysis of the general stress response network in Escherichia coli: sigma(S)-dependent genes, promoters and sigma factor selectivity. J Bacteriol. 2006, 187: 1591-1603. 10.1128/JB.187.5.1591-1603.2005.
Article
Google Scholar
Lelong C, Aguiluz K, Luche S, Kuhn L, Garin J, Rabilloud T, Geiselmann J: The Crl-RpoS regulon of Escherichia coli. Mol Cell Proteomics. 2007, 6: 648-659. 10.1074/mcp.M600191-MCP200.
Article
CAS
PubMed
Google Scholar
Ayala-Castro C, Saini A, Outten FW: Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev. 2008, 72: 110-125. 10.1128/MMBR.00034-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
Johnson DC, Dean DR, Smith AD, Johnson MK: Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem. 2005, 74: 247-281. 10.1146/annurev.biochem.74.082803.133518.
Article
CAS
PubMed
Google Scholar
Choi YS, Shin DH, Chung IY, Kim SH, Heo YJ, Cho YH: Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J Microbiol Biotechnol. 2007, 17: 1344-1352.
PubMed
Google Scholar
Tang Y, Guest JR: Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology. 1999, 145: 3069-3079.
Article
CAS
PubMed
Google Scholar
Varghese S, Tang Y, Imlay JA: Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol. 2003, 185: 221-230. 10.1128/JB.185.1.221-230.2003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yoder-Himes DR, Chain PSG, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R: Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci USA. 2009, 106: 3976-3981. 10.1073/pnas.0813403106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Coenye T, Drevinek P, Mahenthiralingam E, Shah SA, Gill RT, Vandamme P, Ussery DW: Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome. FEMS Microbiol Lett. 2007, 276: 83-92. 10.1111/j.1574-6968.2007.00916.x.
Article
CAS
PubMed
Google Scholar
Wassarman KM: 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol. 2007, 10: 164-168. 10.1016/j.mib.2007.03.008.
Article
CAS
PubMed
Google Scholar
Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A: Rfam: updates to the RNA families database. Nucl Acids Res. 2009, 37: 136-140. 10.1093/nar/gkn766.
Article
Google Scholar
Thomas MS: Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals. 2006, 20: 431-452. 10.1007/s10534-006-9065-4.
Article
Google Scholar
Menard A, Estrada De Los Santos P, Graindorge A, Cournoyer B: Architecture of Burkholderia cepacia complex σ-70 gene family: evidence of alternative primary and clade-specific factors, and genomic instability. BMC Genomics. 2007, 8: 308-10.1186/1471-2164-8-308.
Article
PubMed Central
PubMed
Google Scholar
Agnoli K, Lowe CA, Farmer KL, Husnain I, Thomas MS: The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an ECF σ factor which is a part of the Fur regulon. J Bacteriol. 2006, 188: 3631-3644. 10.1128/JB.188.10.3631-3644.2006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Grigorova IL, Phleger NJ, Mutalik VK, Gross CA: Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. Proc Natl Acad Sci USA. 2006, 103: 5332-5337. 10.1073/pnas.0600828103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gruber TM, Gross CA: Multiple sigma subunits and the partitioning of bacterial transcription space. Ann Rev Microbiol. 2003, 57: 441-466. 10.1146/annurev.micro.57.030502.090913.
Article
CAS
Google Scholar
Tiburzi F, Imperi F, Visca P: Intracellular levels and activity of PvdS, the major starvation sigma factor of Pseudomonas aeruginosa. Mol Microbiol. 2008, 67: 213-227.
Article
CAS
PubMed
Google Scholar
Flannagan RS, Valvano MA: Burkholderia cenocepacia requires RpoE for growth under stress conditions and delay of phagolysosomal fusion in macrophages. Microbiology. 2008, 154: 643-653. 10.1099/mic.0.2007/013714-0.
Article
CAS
PubMed
Google Scholar
Saldias MS, Lamothe J, Wu R, Valvano MA: Burkholderia cenocepacia requires the RpoN sigma factor for biofilm formation and intracellular trafficking within macrophages. Infect Immun. 2008, 76: 1059-1067. 10.1128/IAI.01167-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
McCarter LL: Regulation of flagella. Curr Opin Microbiol. 2006, 9: 180-186. 10.1016/j.mib.2006.02.001.
Article
CAS
PubMed
Google Scholar
Tomich M, Herfst CA, Golden JW, Mohr CD: Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun. 2002, 70: 1799-1806. 10.1128/IAI.70.4.1799-1806.2002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Urban TA, Griffith A, Torok AM, Smolkin ME, Burns JL, Goldberg JB: Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun. 2004, 72: 5126-5134. 10.1128/IAI.72.9.5126-5134.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Summer EJ, Gonzalez CF, Carlisle T, Mebane LM, Cass AM, Savva CG, LiPuma JJ, Young R: Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol. 2004, 340: 49-65. 10.1016/j.jmb.2004.04.053.
Article
CAS
PubMed
Google Scholar
Summer EJ, Gill JJ, Upton C, Gonzalez CF, Young R: Role of phages in the pathogenesis of Burkholderia, or 'Where are the toxin genes in Burkholderia phages?'. Curr Opin Microbiol. 2007, 10: 410-417. 10.1016/j.mib.2007.05.016.
Article
CAS
PubMed Central
PubMed
Google Scholar
Braid MD, Silhavy JL, Kitts CL, Cano RJ, Howe MM: Complete genomic sequence of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa. J Bacteriol. 2004, 186: 6560-6574. 10.1128/JB.186.19.6560-6574.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Leiske DL, Karimpour-Fard A, Hume PS, Fairbanks BD, Gill RT: A comparison of alternative 60-mer probe designs in an in-situ synthesized oligonucleotide microarray. BMC Genomics. 2006, 7: 72-10.1186/1471-2164-7-72.
Article
PubMed Central
PubMed
Google Scholar
Baldwin A, Mahenthiralingam E, Thickett KM, Honeybourne D, Maiden MC, Govan JR, Speert DP, LiPuma JJ, Vandamme P, Dowson CG: Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol. 2005, 43: 4665-4673. 10.1128/JCM.43.9.4665-4673.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: 7-10.1186/gb-2002-3-7-research0034.
Article
Google Scholar
Directorate for the Quality of Medicines of the Council of Europe: 2004, European Pharmacopoeia. Strasbourg
MAQC Consortium: The microarray quality control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006, 24: 1151-1161. 10.1038/nbt1239.
Article
PubMed Central
Google Scholar
Arikawa E, Sun Y, Wang J, Zhou Q, Ning B, Dial SL, Guo L, Yang J: Cross-platform comparison of SYBR Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC) study. BMC Genomics. 2008, 9: 328-10.1186/1471-2164-9-328.
Article
PubMed Central
PubMed
Google Scholar
Toledano MB, Kullik I, Trinh F, Baird PT, Schneider TD, Storz G: Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell. 1994, 78: 897-909. 10.1016/S0092-8674(94)90702-1.
Article
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res. 2003, 31: 3406-3415. 10.1093/nar/gkg595.
Article
CAS
PubMed Central
PubMed
Google Scholar
Govan JRW, Brown PH, Maddison J, Doherty CJ, Nelson JW, Dodd M, Greening AP, Webb AK: Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet. 1993, 342: 15-19. 10.1016/0140-6736(93)91881-L.
Article
CAS
PubMed
Google Scholar
Mahenthiralingam E, Campbell ME, Henry DA, Speert DP: Epidemiology of Burkholderia cepacia infection in patients with cystic fibrosis: analysis by randomly amplified polymorphic DNA fingerprinting. J Clin Microbiol. 1996, 34: 2914-2920.
CAS
PubMed Central
PubMed
Google Scholar
Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JRW: Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Evol Microbiol. 1997, 47: 1188-1200. 10.1099/00207713-47-4-1188.
CAS
Google Scholar
LiPuma JJ, Spilker T, Coenye T, Gonzalez CF: An epidemic Burkholderia cepacia complex strain identified in soil. Lancet. 2002, 359: 2002-2003. 10.1016/S0140-6736(02)08836-0.
Article
PubMed
Google Scholar
Chen JS, Witzmann KA, Spilker T, Fink RJ, LiPuma JJ: Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J Pediatr. 2001, 139: 643-649. 10.1067/mpd.2001.118430.
Article
CAS
PubMed
Google Scholar
King EB, Parke JL: Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia strain AMMD on four pea cultivars. Plant Dis. 1993, 77: 1185-1188.
Article
Google Scholar
Coenye T, LiPuma JJ, Henry D, Hoste B, Vandemeulebroecke K, Gillis M, Speert DP, Vandamme P: Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol. 2001, 51: 271-279.
Article
CAS
PubMed
Google Scholar