Shinozaki K, Yamaguchi-Shinozaki K: Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007, 58 (2): 221-227.
Article
CAS
PubMed
Google Scholar
Wang W, Vinocur B, Altman A: Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003, Springer Science & Business Media B.V, 218: 1-10.1007/s00425-003-1105-5.
Google Scholar
Bartels D, Sunkar R: Drought and salt tolerance in plants. Critical Reviews in Plant Sciences. 2005, 24 (1): 23-58. 10.1080/07352680590910410.
Article
CAS
Google Scholar
Chaves MM, Maroco JP, Pereira JS: Understanding plant responses to drought - from genes to the whole plant. Funct Plant Biol. 2003, 30 (3): 239-264. 10.1071/FP02076.
Article
CAS
PubMed
Google Scholar
Davies WJ, Zhang J: Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology. 1991, 42 (1): 55-76. 10.1146/annurev.pp.42.060191.000415.
Article
CAS
Google Scholar
Schachtman DP, Goodger JQD: Chemical root to shoot signaling under drought. Trends in Plant Science. 2008, 13 (6): 281-287. 10.1016/j.tplants.2008.04.003.
Article
CAS
PubMed
Google Scholar
Davies W, Kudoyarova G, Hartung W: Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. Journal of Plant Growth Regulation. 2005, 24 (4): 285-295. 10.1007/s00344-005-0103-1.
Article
CAS
Google Scholar
Hartung W, Schraut D, Jiang F: Physiology of abscisic acid (ABA) in roots under stress - a review of the relationship between root ABA and radial water and ABA flows. Australian Journal of Agricultural Research. 2005, 56: 1253-1259. 10.1071/AR05065.
Article
CAS
Google Scholar
Sharp RE, LeNoble ME: ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot. 2002, 53 (366): 33-37. 10.1093/jexbot/53.366.33.
Article
CAS
PubMed
Google Scholar
Alvarez S, Marsh EL, Schroeder SG, Schachtman DP: Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 2008, 31 (3): 325-340. 10.1111/j.1365-3040.2007.01770.x.
Article
CAS
PubMed
Google Scholar
De Smet I, Zhang H, Inzé D, Beeckman T: A novel role for abscisic acid emerges from underground. 2006, 11 (9): 434-439.
Google Scholar
Vartanian N, Marcotte L, Giraudat J: Drought rhizogenesis in Arabidopsis thaliana (differential responses of hormonal mutants). Plant Physiol. 1994, 104 (2): 761-767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hose E, Steudle E, Hartung W: Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta. 2000, 211 (6): 874-882. 10.1007/s004250000412.
Article
CAS
PubMed
Google Scholar
Deyholos MK: Making the most of drought and salinity transcriptomics. Plant Cell Environ. 2010, 33 (4): 648-654. 10.1111/j.1365-3040.2009.02092.x.
Article
CAS
PubMed
Google Scholar
Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology. 2002, 130 (4): 2129-2141. 10.1104/pp.008532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Zheng B, Mao C, Qi X, Liu F, Wu P: Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit. Molecular Genetics and Genomics. 2004, 272 (4): 433-442. 10.1007/s00438-004-1066-9.
Article
CAS
PubMed
Google Scholar
Mohammadi M, Kav HNV, Deyholos MK: Transcript expression profile of water-limited roots of hexaploid wheat (Triticum aestivum 'Opata'). Genome. 2008, 51 (5): 357-367. 10.1139/G08-020.
Article
CAS
PubMed
Google Scholar
Spollen WG, Tao W, Valliyodan B, Chen K, Hejlek LG, Kim JJ, LeNoble ME, Zhu J, Bohnert HJ, Henderson D, Schachtman DP, Davis GE, Springer GK, Sharp RE, Nguyen HT: Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biology. 2008, 8: 15-10.1186/1471-2229-8-15.
Article
CAS
Google Scholar
Micheletto S, Rodriguez-Uribe L, Hernandez R, Richins RD, Curry J, O'Connell MA: Comparative transcript profiling in roots of Phaseolus acutifolius and P-vulgaris under water deficit stress. Plant Science. 2007, 173 (5): 510-520. 10.1016/j.plantsci.2007.08.003.
Article
CAS
Google Scholar
Buchanan CD, Lim SY, Salzman RA, Kagiampakis L, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE: Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Molecular Biology. 2005, 58 (5): 699-720. 10.1007/s11103-005-7876-2.
Article
CAS
PubMed
Google Scholar
Chen D, Liang MX, DeWald D, Weimer B, Peel MD, Bugbee B, Michaelson J, Davis E, Wu Y: Identification of dehydration responsive genes from two non-nodulated alfalfa cultivars using Medicago truncatula microarrays. Acta Physiol Plant. 2008, 30 (2): 183-199. 10.1007/s11738-007-0107-5.
Article
CAS
Google Scholar
Street NR, Skogstrom O, Sjodin A, Tucker J, Rodriguez-Acosta M, Nilsson P, Jansson S, Taylor G: The genetics and genomics of the drought response in Populus. Plant J. 2006, 48 (3): 321-341. 10.1111/j.1365-313X.2006.02864.x.
Article
CAS
PubMed
Google Scholar
Caruso A, Chefdor F, Carpin S, Depierreux C, Delmotte FM, Kahlem G, Morabito D: Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. Journal of Plant Physiology. 2008, 165 (9): 932-941. 10.1016/j.jplph.2007.04.006.
Article
CAS
PubMed
Google Scholar
Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML: Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. Plant Biol. 2010, 12 (2): 341-354. 10.1111/j.1438-8677.2009.00320.x.
Article
CAS
PubMed
Google Scholar
Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM: Genotype and time of day shape the Populus drought response. Plant J. 2009, 60 (4): 703-715. 10.1111/j.1365-313X.2009.03993.x.
Article
CAS
PubMed
Google Scholar
Bogeat-Triboulot MB, Brosche M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman JF, Polle A, Kangasjarvi J, Dreyer E: Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 2007, 143 (2): 876-892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang SJ, Puryear JD, Dias M, Funkhouser EA, Newton RJ, Cairney J: Gene expression under water deficit in loblolly pine (Pinus taeda): Isolation and characterization of cDNA clones. Physiologia Plantarum. 1996, 97 (1): 139-148. 10.1111/j.1399-3054.1996.tb00490.x.
Article
CAS
Google Scholar
Heath LS, Ramakrishnan N, Sederoff RR, Whetten RW, Chevone BI, Struble CA, Jouenne VY, Chen D, Zyl Lv, Grene R: Studying the functional genomics of stress responses in loblolly pine with the expresso microarray experiment management system. Comparative and Functional Genomics. 2002, 3: 226-243. 10.1002/cfg.169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, van Zyl L, Egertsdotter U, Sederoff RR, Grene R: Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol. 2003, 133 (4): 1702-1716. 10.1104/pp.103.026914.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubos C, Le Provost G, Pot D, Salin F, Lalane C, Madur D, Frigerio JM, Plomion C: Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiology. 2003, 23 (3): 169-179.
Article
CAS
PubMed
Google Scholar
Dubos C, Plomion C: Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Molecular Biology. 2003, 51 (2): 249-262. 10.1023/A:1021168811590.
Article
CAS
PubMed
Google Scholar
Lorenz WW, Sun F, Liang C, Kolychev D, Wang HM, Zhao X, Cordonnier-Pratt MM, Pratt LH, Dean JFD: Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiology. 2006, 26 (1): 1-16. 10.1093/treephys/26.1.1.
Article
PubMed
Google Scholar
Vásquez-Robinet C, Watkinson JI, Sioson AA, Ramakrishnan N, Heath LS, Grene R: Differential expression of heat shock protein genes in preconditioning for photosynthetic acclimation in water-stressed loblolly pine. Plant Physiology and Biochemistry. 2010, 48 (4): 256-264. 10.1016/j.plaphy.2009.12.005.
Article
PubMed
CAS
Google Scholar
Lorenz WW, Dean JFD: SAGE Profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiology. 2002, 22 (5): 301-310.
Article
CAS
PubMed
Google Scholar
[http://fungen.org/Pine.htm]
Lorenz WW, Yu YS, Simões M, Dean JFD: Processing the Loblolly Pine PtGen2 cDNA Microarray. Journal of Visualized Experiments. 2009, 25:
Google Scholar
Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology. 2005, 4: (Article 17)
Google Scholar
Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008, 9 (1): 559-10.1186/1471-2105-9-559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kerr MK: Design considerations for efficient and effective microarray studies. Biometrics. 2003, 59 (4): 822-828. 10.1111/j.0006-341X.2003.00096.x.
Article
PubMed
Google Scholar
Nairn CJ, Lennon DM, Wood-Jones A, Nairn AV, Dean JFD: Carbohydrate-related genes and cell wall biosynthesis in vascular tissues of loblolly pine (Pinus taeda). Tree Physiology. 2008, 28 (7): 1099-1110. 10.1093/treephys/28.7.1099.
Article
CAS
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, 21 (18): 3674-3676. 10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Chang S, Puryear J, Cairney J: A simple and efficient method for extracting RNA from pine trees. Plant Molecular Biology Reporter. 1993, 11 (2): 113-116. 10.1007/BF02670468.
Article
CAS
Google Scholar
Lorenz WW, Yu YS, Dean JFD: An improved method of RNA isolation from loblolly pine (P. taeda L.) and other conifer species. Journal of Visualized Experiments. 2010, 36:
Google Scholar
Alba R, Fei ZJ, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D'Ascenzo M, Gordon JS, Rose JKC, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J: ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J. 2004, 39 (5): 697-714. 10.1111/j.1365-313X.2004.02178.x.
Article
CAS
PubMed
Google Scholar
Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ: Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell. 2005, 17 (11): 2954-2965. 10.1105/tpc.105.036053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rocke DM, Durbin B: A model for measurement error for gene expression arrays. Journal of Computational Biology. 2001, 8 (6): 557-10.1089/106652701753307485.
Article
CAS
PubMed
Google Scholar
Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y: Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Informatics. 2007, 3: 11-17.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Hessner MJ, Wu Y, Pati N, Ghosh S: Quantitative quality control in microarray experiments and the application in data filtering, normalization and false positive rate prediction. Bioinformatics. 2003, 19 (11): 1341-1347. 10.1093/bioinformatics/btg154.
Article
CAS
PubMed
Google Scholar
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB: Missing value estimation methods for DNA microarrays. Bioinformatics. 2001, 17 (6): 520-525. 10.1093/bioinformatics/17.6.520.
Article
CAS
PubMed
Google Scholar
Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, et al: Integration of biological networks and gene expression data using Cytoscape. Nat Protocols. 2007, 2 (10): 2366-2382. 10.1038/nprot.2007.324.
Article
CAS
PubMed
Google Scholar
Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M: Computing topological parameters of biological networks. Bioinformatics. 2008, 24 (2): 282-284. 10.1093/bioinformatics/btm554.
Article
CAS
PubMed
Google Scholar
Gene Expression Omnibus (GEO). [http://www.ncbi.nlm.nih.gov/geo/]
Yuen T, Wurmbach E, Pfeffer RL, Ebersole BJ, Sealfon SC: Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucl Acids Res. 2002, 30 (10): e48-10.1093/nar/30.10.e48.
Article
PubMed
PubMed Central
Google Scholar
Draghici S, Khatri P, Eklund AC, Szallasi Z: Reliability and reproducibility issues in DNA microarray measurements. Trends in Genetics. 2006, 22 (2): 101-109. 10.1016/j.tig.2005.12.005.
Article
CAS
PubMed
Google Scholar
Singh KB, Foley RC, Onate-Sanchez L: Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology. 2002, 5 (5): 430-436. 10.1016/S1369-5266(02)00289-3.
Article
CAS
PubMed
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K: Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science. 2005, 10 (2): 88-94. 10.1016/j.tplants.2004.12.012.
Article
CAS
PubMed
Google Scholar
Barabasi AL, Albert R: Emergence of scaling in random networks. Science. 1999, 286 (5439): 509-512. 10.1126/science.286.5439.509.
Article
CAS
PubMed
Google Scholar
Barabasi AL, Oltvai ZN: Network biology: Understanding the cell's functional organization. Nat Rev Genet. 2004, 5 (2): 101-U115. 10.1038/nrg1272.
Article
CAS
PubMed
Google Scholar
Watts DJ, Strogatz SH: Collective dynamics of 'small-world' networks. Nature. 1998, 393 (6684): 440-442. 10.1038/30918.
Article
CAS
PubMed
Google Scholar
[http://www.cytoscape.org/]
[http://med.bioinf.mpi-inf.mpg.de/netanalyzer/]
Lorenz WW, Simões M, Miguel C, Dean JFD: Analysis of gene expression changes in Pinus species using a loblolly pine cDNA microarray. IUFRO-CITA 2008 Joint Conference: 2008; Quebec City, Quebec. 2008, 174-
Google Scholar
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31 (3): 279-292. 10.1046/j.1365-313X.2002.01359.x.
Article
CAS
PubMed
Google Scholar
Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K: Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. The Plant Journal. 2003, 34 (6): 868-887. 10.1046/j.1365-313X.2003.01774.x.
Article
CAS
PubMed
Google Scholar
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K: Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA get-blot analyses. Plant Physiology. 2003, 133 (4): 1755-1767. 10.1104/pp.103.025742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology. 2002, 48 (5): 551-573. 10.1023/A:1014875215580.
Article
CAS
Google Scholar
Ueda A, Kathiresan A, Inada M, Narita Y, Nakamura T, Shi WM, Takabe T, Bennett J: Osmotic stress in barley regulates expression of a different set of genes than salt stress does. Journal of Experimental Botany. 2004, 55 (406): 2213-2218. 10.1093/jxb/erh242.
Article
CAS
PubMed
Google Scholar
Cramer G, Ergül A, Grimplet J, Tillett R, Tattersall E, Bohlman M, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch K, Schooley D, Cushman J: Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics. 2007, 7 (2): 111-134. 10.1007/s10142-006-0039-y.
Article
CAS
Google Scholar
Mena-Petite A, Lacuesta M, Munoz-Rueda A: Ammonium assimilation in Pinus radiata seedlings: effects of storage treatments, transplanting stress and water regimes after planting under simulated field conditions. Environ Exp Bot. 2006, 55 (1-2): 1-14. 10.1016/j.envexpbot.2004.09.002.
Article
CAS
Google Scholar
Rossi S, Simard S, Rathgeber CBK, Deslauriers A, De Zan C: Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees-Struct Funct. 2009, 23 (1): 85-93. 10.1007/s00468-008-0257-0.
Article
Google Scholar
Mena-Petite A, Gonzalez-Moro B, Gonzalez-Murua C, Lacuesta M, Rueda AM: Sequential effects of acidic precipitation and drought on photosynthesis and chlorophyll fluorescence parameters of Pinus radiata d. don seedlings. Journal of Plant Physiology. 2000, 156 (1): 84-92.
Article
CAS
Google Scholar
Brodribb TJ, Cochard H: Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers. Plant Physiology. 2009, 149 (1): 575-584. 10.1104/pp.108.129783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dure L, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sung ZR: Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology. 1989, 12 (5): 475-486. 10.1007/BF00036962.
Article
CAS
PubMed
Google Scholar
Tunnacliffe A, Wise M: The continuing conundrum of the LEA proteins. Naturwissenschaften. 2007, 94 (10): 791-812. 10.1007/s00114-007-0254-y.
Article
CAS
PubMed
Google Scholar
Rorat T: Plant dehydrins - Tissue location, structure and function (vol 11, pg 536, 2006). Cellular & Molecular Biology Letters. 2007, 12 (1): 148-10.2478/s11658-006-0071-x.
Article
Google Scholar
Crowe JH, Crowe LM, Carpenter JF, Wistrom CA: Stabilization of dry phospholipid-bilayers and protein by sugars. Biochem J. 1987, 242 (1): 1-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hincha DK, Hagemann M: Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J. 2004, 383: 277-283. 10.1042/BJ20040746.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toldi O, Tuba Z, Scott P: Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops?. Plant Science. 2009, 176 (2): 187-199. 10.1016/j.plantsci.2008.10.002.
Article
CAS
Google Scholar
Zhuang Y, Ren G, Yue G, Li Z, Qu X, Hou G, Zhu Y, Zhang J: Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Reports. 2007, 26 (12): 2137-2147. 10.1007/s00299-007-0419-3.
Article
CAS
PubMed
Google Scholar
Xu C, Huang B: Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance. Journal of Experimental Botany. 2008, 59 (15): 4183-4183. 10.1093/jxb/ern258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boscariol-Camargo RL, Berger IJ, Souza AA, do Amaral AM, Carlos EF, Freitas-Astua J, Takita MA, Targon M, Medina CL, Reis MS, Machado MA: In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress. Genet Mol Biol. 2007, 30 (3): 906-916. 10.1590/S1415-47572007000500019.
Article
CAS
Google Scholar
Bois G, Bigras FJ, Bertrand A, Piche Y, Fung MYP, Khasa DP: Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiology. 2006, 26 (9): 1185-1196. 10.1093/treephys/26.9.1185.
Article
PubMed
Google Scholar
Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajus N, Pozueta-Romero J: Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant and Cell Physiology. 2005, 46 (8): 1366-1376. 10.1093/pcp/pci148.
Article
CAS
PubMed
Google Scholar
Hare PD, Cress WA, Van Staden J: Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 1998, 21 (6): 535-553. 10.1046/j.1365-3040.1998.00309.x.
Article
CAS
Google Scholar
Roitsch T: Source-sink regulation by sugar and stress. Current Opinion in Plant Biology. 1999, 2 (3): 198-206. 10.1016/S1369-5266(99)80036-3.
Article
CAS
PubMed
Google Scholar
Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK: Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany. 2003, 54 (382): 513-524. 10.1093/jxb/erg050.
Article
CAS
PubMed
Google Scholar
Saravitz DM, Pharr DM, Carter TE: Galactinol synthase activity and soluble sugars in developing seeds of 4 soybean genotypes. Plant Physiology. 1987, 83 (1): 185-189. 10.1104/pp.83.1.185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schoffl F: Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 2004, 136 (2): 3148-3158. 10.1104/pp.104.042606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K: Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 2002, 29 (4): 417-426. 10.1046/j.0960-7412.2001.01227.x.
Article
CAS
PubMed
Google Scholar
Nishizawa A, Yabuta Y, Shigeoka S: Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008, 147 (3): 1251-1263. 10.1104/pp.108.122465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohnert HJ, Nelson DE, Jensen RG: Adaptations to environmental stresses. Plant Cell. 1995, 7 (7): 1099-1111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyazaki S, Rice M, Quigley F, Bohnert HJ: Expression of plant inositol transporters in yeast. Plant Science. 2004, 166 (1): 245-252. 10.1016/j.plantsci.2003.09.012.
Article
CAS
Google Scholar
Luu DT, Maurel C: Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant, Cell & Environment. 2005, Blackwell Publishing Limited, 28: 85-96. 10.1111/j.1365-3040.2004.01295.x.
Google Scholar
Galmés J, Pou A, Alsina M, Tomàs M, Medrano H, Flexas J: Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta. 2007, 226 (3): 671-681. 10.1007/s00425-007-0515-1.
Article
PubMed
CAS
Google Scholar
Smart LB, Moskal WA, Cameron KD, Bennett AB: MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol. 2001, 42 (7): 686-693. 10.1093/pcp/pce085.
Article
CAS
PubMed
Google Scholar
Jang JY, Kim DG, Kim YO, Kim JS, Kang H: An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology. 2004, 54 (5): 713-725.
Article
CAS
PubMed
Google Scholar
Porcel R, Aroca R, Azcón R, Ruiz-Lozano J: PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Molecular Biology. 2006, 60 (3): 389-404. 10.1007/s11103-005-4210-y.
Article
CAS
PubMed
Google Scholar
Aroca R, Ferrante A, Vernieri P, Chrispeels MJ: Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Ann Bot. 2006, 98 (6): 1301-1310. 10.1093/aob/mcl219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu QJ, Hu YL, Li JF, Wu Q, Lin ZP: Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought resistance. Plant Science. 2005, 169 (4): 647-656. 10.1016/j.plantsci.2005.04.013.
Article
CAS
Google Scholar
Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G: Overexpression of a Plasma Membrane Aquaporin in Transgenic Tobacco Improves Plant Vigor under Favorable Growth Conditions but Not under Drought or Salt Stress. Plant Cell. 2003, 15 (2): 439-447. 10.1105/tpc.009225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P: Whole Gene Family Expression and Drought Stress Regulation of Aquaporins. Plant Molecular Biology. 2005, 59 (3): 469-484. 10.1007/s11103-005-0352-1.
Article
CAS
PubMed
Google Scholar
Mahdieh M, Mostajeran A, Horie T, Katsuhara M: Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant and Cell Physiology. 2008, 49 (5): 801-813. 10.1093/pcp/pcn054.
Article
CAS
PubMed
Google Scholar
Eulgem T, Rushton P, Robatzek S, Somssich I: The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5 (5): 199-206. 10.1016/S1360-1385(00)01600-9.
Article
CAS
PubMed
Google Scholar
Ulker B, Somssich I: WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol. 2004, 7 (5): 491-498. 10.1016/j.pbi.2004.07.012.
Article
PubMed
CAS
Google Scholar
Berri S, Abbruscato P, Faivre-Rampant O, Brasileiro A, Fumasoni I, Satoh K, Kikuchi S, Mizzi L, Morandini P, Pe M, Piffanelli P: Characterization of WRKY co-regulatory networks in rice and Arabidopsis. BMC Plant Biology. 2009, 9 (1): 120-10.1186/1471-2229-9-120.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S: A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol. 2008, 49 (6): 865-879. 10.1093/pcp/pcn061.
Article
CAS
PubMed
Google Scholar
Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K: Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports. 2009, 28 (1): 21-30. 10.1007/s00299-008-0614-x.
Article
CAS
PubMed
Google Scholar
Wei W, Zhang Y, Han L, Guan Z, Chai T: A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Reports. 2008, 27 (4): 795-803. 10.1007/s00299-007-0499-0.
Article
CAS
PubMed
Google Scholar
Ren XZ, Chen ZZ, Liu Y, Zhang HR, Zhang M, Liu QA, Hong XH, Zhu JK, Gong ZZ: ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 2010, 63 (3): 417-429. 10.1111/j.1365-313X.2010.04248.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY: Soybean WRKY-type transcription factor genes,GmWRKY13, GmWRKY21, GmWRKY55, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal. 2008, 6 (5): 486-503. 10.1111/j.1467-7652.2008.00336.x.
Article
CAS
PubMed
Google Scholar
Wang Z, Zhu Y, Wang LL, Liu X, Liu YX, Phillips J, Deng X: A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta. 2009, 230 (6): 1155-1166. 10.1007/s00425-009-1014-3.
Article
CAS
PubMed
Google Scholar
Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFd, Leung J: An update on abscisic acid signaling in plants and more. Mol Plant. 2008, 1 (2): 198-217. 10.1093/mp/ssm022.
Article
CAS
PubMed
Google Scholar
Christmann A, Hoffmann T, Teplova I, Grill E, Muller A: Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol. 2005, 137 (1): 209-219. 10.1104/pp.104.053082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor IB, Burbidge A, Thompson AJ: Control of abscisic acid synthesis. Journal of Experimental Botany. 2000, 51 (350): 1563-1574. 10.1093/jexbot/51.350.1563.
Article
CAS
PubMed
Google Scholar
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K: Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001, 27 (4): 325-333. 10.1046/j.1365-313x.2001.01096.x.
Article
CAS
PubMed
Google Scholar
Yang JF, Guo ZF: Cloning of a 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis and its expression in response to abiotic stresses. Plant Cell Reports. 2007, 26 (8): 1383-1390. 10.1007/s00299-007-0325-8.
Article
CAS
PubMed
Google Scholar
Munne-Bosch S, Falara V, Pateraki I, Lopez-Carbonella M, Cela J, Kanellis AK: Physiological and molecular responses of the isoprenoid biosynthetic pathway in a drought-resistant Mediterranean shrub, Cistus creticus exposed to water deficit. Journal of Plant Physiology. 2009, 166 (2): 136-145. 10.1016/j.jplph.2008.02.011.
Article
CAS
PubMed
Google Scholar
Havlova M, Dobrev PI, Motyka V, Storchova H, Libus J, Dobra J, Malbek J, Gaudinova A, Vankova R: The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant, Cell & Environment. 2008, 31 (3): 341-353. 10.1111/j.1365-3040.2007.01766.x.
Article
CAS
Google Scholar
Martin RC, Mok DWS, Smets R, Van Onckelen HA, Mok MC: Development of transgenic tobacco harboring a zeatin O-glucosyltransferase gene from Phaseolus. In Vitro Cell Dev Biol-Plant. 2001, 37 (3): 354-360. 10.1007/s11627-001-0063-5.
Article
CAS
Google Scholar
Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K: Release of active cytokinin by a beta-glucosidase localized to the maize root-meristem. Science. 1993, 262 (5136): 1051-1054. 10.1126/science.8235622.
Article
CAS
PubMed
Google Scholar
Mao LY, Van Hemert JL, Dash S, Dickerson JA: Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics. 2009, 10: 24-10.1186/1471-2105-10-24.
Article
CAS
Google Scholar
Li P, Ma S, Bohnert HJ: Coexpression characteristics of trehalose-6-phosphate phosphatase subfamily genes reveal different functions in a network context. Physiologia Plantarum. 2008, 133 (3): 544-556. 10.1111/j.1399-3054.2008.01101.x.
Article
CAS
PubMed
Google Scholar
Lee TH, Kim YK, Pham TTM, Song SI, Kim JK, Kang KY, An G, Jung KH, Galbraith DW, Kim M, Yoon UH, Nahm BH: RiceArrayNet: A Database for Correlating Gene Expression from Transcriptome Profiling, and Its Application to the Analysis of Coexpressed Genes in Rice. Plant Physiology. 2009, 151 (1): 16-33. 10.1104/pp.109.139030.
Article
CAS
PubMed
PubMed Central
Google Scholar