Görke B, Stülke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008, 6: 613-624. 10.1038/nrmicro1932.
Article
PubMed
Google Scholar
Deutscher J: The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol. 2008, 11: 87-93. 10.1016/j.mib.2008.02.007.
Article
CAS
PubMed
Google Scholar
Gancedo JM: Carbon catabolite repression in yeast. Microbiol Mol Biol Rev. 1998, 62: 334-361.
CAS
PubMed
PubMed Central
Google Scholar
Ronne H: Glucose repression in fungixs. Trends Genet. 1995, 11: 12-17. 10.1016/S0168-9525(00)88980-5.
Article
CAS
PubMed
Google Scholar
Westholm JO, Nordberg N, Murén E, Ameur A, Komorowski J, Ronne H: Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics. 2008, 9: 601-10.1186/1471-2164-9-601.
Article
PubMed
PubMed Central
Google Scholar
Dowzer CEA, Kelly JM: Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol. 1991, 11: 5701-5709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruijter GJ, Visser J: Carbon repression in Aspergilli. FEMS Microbiol Letts. 1997, 151: 103-114. 10.1111/j.1574-6968.1997.tb12557.x.
Article
CAS
Google Scholar
Felenbok B, Flipphi M, Nikolaev I: Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Progress Nucleic Acid Res Mol Biol. 2001, 69: 149-204.
Article
CAS
Google Scholar
Panozzo C, Cornillot E, Felenbok B: The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem. 1998, 273: 6367-6372. 10.1074/jbc.273.11.6367.
Article
CAS
PubMed
Google Scholar
Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP: Carbon catabolite repression of xyn1 (xylanase I-encoding) gene expression in Trichoderma reesei. Mol Microbiol. 1996, 21: 1273-1281. 10.1046/j.1365-2958.1996.00094.x.
Article
CAS
PubMed
Google Scholar
Cubero B, Scazzocchio C: Two different, adjacent and divergent zinc finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 1994, 13: 407-415.
CAS
PubMed
PubMed Central
Google Scholar
Takashima S, Iikura H, Nakamura A, Masaki H, Uozumi T: Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. FEMS Microbiol Letts. 1996, 145: 361-366. 10.1111/j.1574-6968.1996.tb08601.x.
Article
CAS
Google Scholar
Cziferszky A, Mach RL, Kubicek CP: Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei). J Biol Chem. 2002, 277: 14688-14699. 10.1074/jbc.M200744200.
Article
CAS
PubMed
Google Scholar
Bailey C, Arst HN: Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem. 1975, 51: 573-577. 10.1111/j.1432-1033.1975.tb03958.x.
Article
CAS
PubMed
Google Scholar
Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP: The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol. 1999, 32: 169-178. 10.1046/j.1365-2958.1999.01341.x.
Article
CAS
PubMed
Google Scholar
Ilyés H, Fekete E, Karaffa L, Fekete E, Sándor E, Szentirmai A, Kubicek CP: CreA-mediated carbon catabolite repression of β-galactosidase formation in Aspergillus nidulans is growth rate dependent. FEMS Microbiol Letts. 2004, 235: 147-151.
Article
Google Scholar
Shroff RA, O'Connor SM, Hynes MJ, Lockington RA, Kelly JM: Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol. 1997, 22: 28-38. 10.1006/fgbi.1997.0989.
Article
CAS
PubMed
Google Scholar
Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M: Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol. 2009, 75: 4853-4860. 10.1128/AEM.00282-09.
Article
PubMed
PubMed Central
Google Scholar
Mach RL, Schindler M, Kubicek CP: Transformation of Trichoderma reesei based on hygromycin resistance using homologous expression signals. Curr Genet. 1994, 25: 567-570. 10.1007/BF00351679.
Article
CAS
PubMed
Google Scholar
Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology. 2004, 3-
Google Scholar
Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M: Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones. 1997, 2: 12-24. 10.1379/1466-1268(1997)002<0012:HTIPMH>2.3.CO;2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubicek CP, Mikus M, Schuster , Schmoll M, Seiboth B: Metabolic engineering strategies for improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels. 2009, 2: 19-10.1186/1754-6834-2-19.
Article
PubMed
PubMed Central
Google Scholar
Boase NA, Kelly JM: A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination. Mol Microbiol. 2004, 53: 929-940. 10.1111/j.1365-2958.2004.04172.x.
Article
CAS
PubMed
Google Scholar
Thomas-Chollier M, Sand O, Turatsinze JV, Janky R, Defrance M, Vervisch E, Brohée S, van Helden J: RSAT: regulatory sequence analysis tools. Nucleic Acids Res. 2008, 1: W119-W127.
Article
Google Scholar
Mogensen J, Nielsen HB, Hofmann G, Nielsen J: Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol. Fungal Genet Biol. 2006, 43: 593-603. 10.1016/j.fgb.2006.03.003.
Article
CAS
PubMed
Google Scholar
Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS: Genome sequence analysis of the cellulolytic fungus Trichoderma reesei (syn Hypocrea jecorina) reveals a surprisingly limited inventory of carbohydrate active enzymes. Nature Biotechnol. 2008, 26: 553-560. 10.1038/nbt1403.
Article
CAS
Google Scholar
Taatjes DJ, Tjian R: Structure and function of CRSP/Med2; a promoter-selective transcriptional coactivator complex. Mol Cell. 2004, 14: 675-683. 10.1016/j.molcel.2004.05.014.
Article
CAS
PubMed
Google Scholar
Balciunas D, Hallberg M, Björklund S, Ronne H: Functional interactions within yeast mediator and evidence of differential subunit modifications. J Biol Chem. 2003, 278: 3831-3839. 10.1074/jbc.M206946200.
Article
CAS
PubMed
Google Scholar
MacCabe AP, Miró P, Ventura L, Ramón D: Glucose uptake in germinating Aspergillus nidulans conidia: involvement of the creA and sorA genes. Microbiology. 2003, 149: 2129-2136. 10.1099/mic.0.26349-0.
Article
CAS
PubMed
Google Scholar
Peter GJ, Düring L, Ahmed A: Carbon catabolite repression regulates amino acid permeases in Saccharomyces cerevisiae via the TOR signaling pathway. J Biol Chem. 2006, 281: 5546-5552.
Article
CAS
PubMed
Google Scholar
Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B: D-galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology. 2006, 152: 1507-1514. 10.1099/mic.0.28719-0.
Article
CAS
PubMed
Google Scholar
Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP: Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics. 2003, 270: 46-55. 10.1007/s00438-003-0895-2.
Article
CAS
PubMed
Google Scholar
García I, Gonzalez R, Gómez D, Scazzocchio C: Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. Eukaryot Cell. 2004, 3: 144-56. 10.1128/EC.3.1.144-156.2004.
Article
PubMed
PubMed Central
Google Scholar
Reyes-Dominguez Y, Narendja F, Berger H, Gallmetzer A, Fernandez-Martin R, Garcia I, Scazzocchio C, Strauss J: Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot Cell. 2008, 7: 656-63. 10.1128/EC.00184-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 1998, 95: 717-728. 10.1016/S0092-8674(00)81641-4.
Article
CAS
PubMed
Google Scholar
Becker PB, Horz W: ATP-dependent nucleosome remodeling. Annu Rev Biochem. 2002, 71: 247-273. 10.1146/annurev.biochem.71.110601.135400.
Article
CAS
PubMed
Google Scholar
Sudarsanam P, Iyer VR, Brown PO, Winston F: Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2000, 97: 3364-3369. 10.1073/pnas.050407197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dechassa ML, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, Peterson CL, Bartholomew B: Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol. 2008, 28: 6010-6021. 10.1128/MCB.00693-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanauchi A, Yamashiro CT, Tanabe S, Murayama T: A ras homologue of Neurospora crassa regulates morphology. Mol Gen Genet. 1997, 254: 427-432. 10.1007/s004380050435.
Article
CAS
Google Scholar
Fortwendel JR, Fuller KK, Stephens TJ, Bacon WC, Askew DS, Rhodes JC: Aspergillus fumigatus RasA regulates asexual development and cell wall integrity. Eukaryot Cell. 2008, 7: 1530-1539. 10.1128/EC.00080-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breviario D, Hinnebusch AG, Dhar R: Multiple regulatory mechanisms control the expression of the RAS1 and RAS2 genes of Saccharomyces cerevisiae. EMBO J. 1988, 7: 1805-1813.
CAS
PubMed
PubMed Central
Google Scholar
Du LL, Novick P: Pag1p, a novel protein associated with protein kinase Cbk1p, is required for cell morphogenesis and proliferation in Saccharomyces cerevisiae. Mol Biol Cell. 2002, 13: 503-514. 10.1091/mbc.01-07-0365.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohara T, Inoue I, Namiki F, Kunoh H, Tsuge T: REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics. 2004, 166: 113-24. 10.1534/genetics.166.1.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C: Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004, 41: 973-81. 10.1016/j.fgb.2004.08.001.
Article
CAS
PubMed
Google Scholar
Hartl L, Kubicek CP, Seiboth B: Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J Biol Chem. 2008, 282: 18654-18659.
Article
Google Scholar
Gruber F, Visser J, Kubicek CP, De Graaff L: Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. Curr Genet. 1990, 18: 451-456.
Google Scholar
Kelly JM, Hynes MJ: Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J. 1985, 4: 475-479.
CAS
PubMed
PubMed Central
Google Scholar
Jourdren L, Duclos A, Brion C, Portnoy T, Mathis H, Margeot A, Le Crom S: Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments. Nucleic Acids Res. 2010, 38: e117-10.1093/nar/gkq110.
Article
PubMed
PubMed Central
Google Scholar
Lemoine S, Combes F, Servant N, Le Crom S: Goulphar: Rapid access and expertise for standard two-color microarray normalization methods. BMC Bioinformatics. 2006, 7: 467-10.1186/1471-2105-7-467.
Article
PubMed
PubMed Central
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST©) for group-wise comparison and statistical alaysis of relative expression results in real-time PCR. Nucleic Acid Research. 2002, 30: e36-10.1093/nar/30.9.e36.
Article
Google Scholar
Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP: Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol. 2006, 72: 2126-2133. 10.1128/AEM.72.3.2126-2133.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J: TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003, 34: 374-378.
CAS
PubMed
Google Scholar
Pavlidis P, Noble WS: Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol. 2001, 2: RESEARCH0042-
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Dor A, Shamir R, Yakhini Z: Clustering gene expression patterns. J Comput Biol. 1999, 6: 281-97. 10.1089/106652799318274.
Article
CAS
PubMed
Google Scholar
Walter MC, Rattei T, Arnold R, Güldener U, Münsterkötter M, Nenova K, Kastenmüller G, Tischler P, Wölling A, Volz A, Pongratz N, Jost R, Mewes HW, Frishman D: PEDANT covers all complete RefSeq genomes. Nucleic Acids Res. 2009, D408-411. 37 Database
Institute of Bioinformatic and Systems Biology: Helmholtz Zentrum München. [http://pedant.helmholtz-muenchen.de/]