Caldeira K: Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research. 2005, 110 (C9): 1-12.
Article
Google Scholar
IPCC: Climate Change 2007: The Physical Science Basis. Changes. 2007, 1-21.
Google Scholar
Tripati AK, Roberts CD, Eagle RA: Coupling of CO2 and Ice Cheet Stability Over Major Climate Transitions of the Last 20 Million Years. Science. 2009, 326: 1394-1397. 10.1126/science.1178296.
Article
CAS
PubMed
Google Scholar
Fabry V, Seibel B, Feely R, Orr J: Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science. 2008, 65: 414-432. 10.1093/icesjms/fsn048.
Article
CAS
Google Scholar
Melzner F, Gutowska M, Langenbuch M, et al: Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?. Biogeosciences. 2009, 6: 4993-4738. 10.5194/bgd-6-4993-2009.
Article
Google Scholar
Doney SC, Fabry VJ, Feely RA, Kleypas JA: Ocean acidification: the other CO2 problem. Annual Review of Marine Science. 2009, 169-192.
Google Scholar
Kroecker KJ, Kordas RL, Crim RN, Singh GG: Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters. 2010, 13: 1419-1434. 10.1111/j.1461-0248.2010.01518.x.
Article
Google Scholar
Michaelidis B, Ouzounis C, Paleras A, Pörtner H: Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series. 2005, 293: 109-118.
Article
Google Scholar
Kurihara H: Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series. 2008, 373: 275-284.
Article
CAS
Google Scholar
Munday PL, Jones GP, Pratchett MS, Williams AJ: Climate change and the future for coral reef fishes. Fish and Fisheries. 2008, 9: 261-285. 10.1111/j.1467-2979.2008.00281.x.
Article
Google Scholar
Munday PL, Dixsona DL, Donelsona JM, Jonesa GP, Pratchett MS, Devitsina GV, Døving KB: Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS. 2009, 106 (6): 1848-1852. 10.1073/pnas.0809996106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ries JB, Cohen AL, McCorkle DC: Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 2009, 37 (12): 1131-1134. 10.1130/G30210A.1.
Article
CAS
Google Scholar
Thomsen J, Melzner F: Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol. 2010, 157: 2667-2676. 10.1007/s00227-010-1527-0.
Article
Google Scholar
Dupont S, Ortega-Martinez O, Thorndyke MC: Impact of near-future ocean acidification on echinoderms. Ecotoxicology. 2010, 19: 449-462. 10.1007/s10646-010-0463-6.
Article
CAS
PubMed
Google Scholar
Gutowska M, Melzner F, Pörtner H, Meier S: Cuttlebone calcification increases exposure to elevated seawater pCO2 in the cephalopod Sepia officinales. Marine Biology. 2010, 157 (7): 1653-1663. 10.1007/s00227-010-1438-0.
Article
CAS
Google Scholar
Checkley DM, Dickson AG, Takahashi M, Radich A, Eisenkolb N, Asch R: Elevated CO2 Enhances Otolith Growth in Young Fish. Science. 2009, 324: 1683-10.1126/science.1169806.
Article
CAS
PubMed
Google Scholar
Truchot J: Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L.). Respiration Physiology. 1975, 23: 351-360. 10.1016/0034-5687(75)90086-9.
Article
CAS
PubMed
Google Scholar
Dejours P, Beekenkamp H: Crayfish respiration as a function of water oxygenation. Respiration Physiology. 1977, 30: 241-251. 10.1016/0034-5687(77)90033-0.
Article
CAS
PubMed
Google Scholar
Thomsen J, Gutowska MA, Saphörster J, Heinemann A, Trübenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Körtzinger A, Wahl M, Melzner F: Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification. Biogeosciences. 2010, 7: 5119-5156. 10.5194/bgd-7-5119-2010.
Article
Google Scholar
Larsen B, Pörtner H, Jensen F: Extra- and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Marine Biology. 1997, 128 (2): 337-346. 10.1007/s002270050099.
Article
CAS
Google Scholar
Spicer JI, Raffo A, Widdicombe S: Influence of CO2-related seawater acidification on extracellular acid-base balance in the velvet swimming crab Necora puber. Marine Biology. 2007, 151 (3): 1117-1125. 10.1007/s00227-006-0551-6.
Article
Google Scholar
Gutowska M, Melzner F, Langenbuch M, et al: Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology, Part B. 2009, 180 (3): 323-335.
Article
Google Scholar
Hu MY, Tseng Y-C, Stumpp M, Gutowska MA, Kiko R, Lucassen M, Melzner F: Elevated seawater p CO2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. Am J Physiol Regul Integr Comp Physiol. 2011, 300 (5): R1100-R1114. 10.1152/ajpregu.00653.2010.
Article
CAS
PubMed
Google Scholar
Gilmour KM, Perry SF: Carbonic anhydrase and acid-base regulation in fish. The Journal of Experimental Biology. 2009, 212: 1647-1661. 10.1242/jeb.029181.
Article
CAS
PubMed
Google Scholar
Truchot J: Mechanisms of the compensation of blood respiratory acid-base disturbances in the shore crab, Carcinus maenas (L.). The Journal of Experimental Zoology. 1979, 210 (3): 407-416. 10.1002/jez.1402100305.
Article
CAS
Google Scholar
Siebers D, Leweck K, Markus H, Winkler A: Sodium Regulation in the Shore Crab Carcinus maenas as Related to Ambient Salinity. Marine Biology. 1982, 69: 37-43. 10.1007/BF00396958.
Article
CAS
Google Scholar
Cieluch U, Anger K, Aujoulat F, Buchholz F, Charmantier-Daures M, Charmantier G: Ontogeny of osmoregulatory structures and functions in the green crab Carcinus maenas (Crustacea, Decapoda). The Journal of Experimental Biology. 2004, 207 (2): 325-336. 10.1242/jeb.00759.
Article
CAS
PubMed
Google Scholar
Storey KB: Suspended animation: the molecular basis of metabolic depression. Canadian Journal of Zoology. 1988, 66 (1): 124-132. 10.1139/z88-016.
Article
CAS
Google Scholar
Dalla Via J, Van den Thillart G, Cattani O, De Zwaan A: Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. II. Intermediary metabolism in blood, liver and muscle. Mar ecol Prog Ser. 1994, 111 (1-2): 17-27.
Article
CAS
Google Scholar
Hochachka PW: Oxygen -A key regulatory metabolite in metabolic defense against hypoxia. Amer Zool. 1997, 37: 595-603.
Article
CAS
Google Scholar
Wu RSS: Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin. 2002, 45 (1-12): 35-45. 10.1016/S0025-326X(02)00061-9.
Article
CAS
PubMed
Google Scholar
Towle DW, Weihrauch D: Osmoregulation by Gills of Euryhaline Crabs: Molecular Analysis of Transporters. American Zoology. 2001, 41 (4): 770-780. 10.1668/0003-1569(2001)041[0770:OBGOEC]2.0.CO;2.
CAS
Google Scholar
Freire C, Onken H, McNamara J: A structure-function analysis of ion transport in crustacean gills and excretory organs. Comparative Biochemistry and Physiology, Part A. 2008, 151 (3): 272-304. 10.1016/j.cbpa.2007.05.008.
Article
Google Scholar
Storey KB: Phosphofructokinase from foot muscle of the whelk, Busycotypus canaliculatum: Evidence for covalent modification of the enzyme during anaerobiosis. Archives of Biochemistry and Biophysics. 1984, 235 (2): 665-672. 10.1016/0003-9861(84)90242-X.
Article
CAS
PubMed
Google Scholar
Rahman MS, Storey KB: Role of covalent modification in the control of glycolytic enzymes in response to environmental anoxia in goldfish. J Comp Physiol B. 1988, 157: 813-820. 10.1007/BF00691013.
Article
CAS
Google Scholar
Kotlyar S, Weihrauch D, Paulsen RS, Towle DW: Expression of arginine kinase enzymatic activity and mRNA in gills of the euryhaline crabs Carcinus maenas and Callinectes sapidus. The Journal of Experimental Biology. 2000, 203: 2395-2404. 31
CAS
PubMed
Google Scholar
Towle DW, Henry RP, Terwilliger NB: Microarray-detected changes in gene expression in gills of green crabs (Carcinus maenas) upon dilution of environmental salinity. Comparative Biochemistry and Physiology, Part D. 2011, 6 (2): 115-25.
PubMed
Google Scholar
Kültz D: Molecular and Evolutionary Basis of the Cellular Stress Response. Annu Rev Physiol. 2005, 67: 225-57. 10.1146/annurev.physiol.67.040403.103635.
Article
PubMed
Google Scholar
Dickson AG, Millero FJ: A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep-Sea Res. 1987, 34: 1733-1743. 10.1016/0198-0149(87)90021-5.
Article
CAS
Google Scholar
Lewis E, Wallace DWR: Program Developed for CO2 System Calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. 1998
Google Scholar
Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbell DM: The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry. 1993, 44: 249-267. 10.1016/0304-4203(93)90207-5.
Article
CAS
Google Scholar
Dickson AG: Standard potential of the reaction AgCls+1/ 2H2g = Ags+HClaq and the standard acidity constant of the ion HSO4- in synthetic sea-water from 273.15 K to 318.15 K. J Chem Thermodyn. 1990, 22: 113-127. 10.1016/0021-9614(90)90074-Z.
Article
CAS
Google Scholar
Blast2GO. [http://www.blast2go.org/]
Conesa A, Götz S: Blast2GO Tutorial. Interface. 2009, Valencia, Spain
Google Scholar
Jensen J, Ørntoft T: Normalization of real-time quantitative RT-PCR data: a model based variance estimation approach to identify genes suited for normalization - applied to bladder- and colon-cancer data-sets. Cancer Research. 2004, 5245-5250. 64
Andersen CL, Jensen JL, Ørntoft TF: Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64: 5245-5250. 10.1158/0008-5472.CAN-04-0496.
Article
CAS
PubMed
Google Scholar
Cui X, Hwang JT, Qiu J, Blades NJ, Churchill GA: Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics. 2005, 6: 59-75. 10.1093/biostatistics/kxh018.
Article
PubMed
Google Scholar
Storey JD: A direct approach to false discovery rates. J R Stat Soc B. 2002, 64: 479-498. 10.1111/1467-9868.00346.
Article
Google Scholar
Theede H, Ponat A, Hiroki K, Schlieper C: Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Marine Biol. 1969, 2: 325-337. 10.1007/BF00355712.
Article
CAS
Google Scholar
Compere P, Wanson S, Pequeux A, Gilles R, Goffinet G: Ultrastructural Changes in the Gill Epithelium of the Green Crab Carcinus maenas in Relation to the External Salinity. Tissue & Cell. 1989, 21 (2): 299-318.
Article
CAS
Google Scholar
Langenbuch M, Poertner HO: Energy budget of hepatocytes from Antarctic fish (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO2: pH-dependent limitations of cellular protein biosynthesis?. The Journal of experimental biology. 2003, 206: 3895-3903. 10.1242/jeb.00620.
Article
CAS
PubMed
Google Scholar
Deigweiher K, Koschnick N, Pörtner H, Lucassen M: Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. Am J Physiol Regulatory Integrative Comp Physiol. 2008, 295: R1660-R1670. 10.1152/ajpregu.90403.2008.
Article
CAS
Google Scholar
O'Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE: Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser. 2010, 398: 157-171.
Article
Google Scholar
Feder ME, Hofmann GE: Heat shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol. 1999, 61: 243-282. 10.1146/annurev.physiol.61.1.243.
Article
CAS
PubMed
Google Scholar
Amrani M, Corbett J, Boateng SY, Dunn MJ, Yacoub MH: Kinetics of Induction and Protective Effect of Heat-Shock Proteins After Cardioplegic Arrest. Ann Thorac Surg. 1996, 61: 1407-1411. 10.1016/0003-4975(96)00085-9.
Article
CAS
PubMed
Google Scholar
Tomanek L, Somero GN: Time Course and Magnitude of Synthesis of Heat-Shock Proteins in Congeneric Marine Snails (Genus Tegula) from Different Tidal Height. Physiological and Biochemical Zoology. 2000, 73 (2): 249-256. 10.1086/316740.
Article
CAS
PubMed
Google Scholar
Yáñez-Mó M, Tejedor R, Rousselle P, Sánchez -Madrid F: Tetraspanins in intercellular adhesion of polarized epithelial cells: spatial and functional relationship to integrins and cadherins. Journal of Cell Science. 2001, 114 (Pt 3): 577-87.
PubMed
Google Scholar
Berditchevski F: Complexes of tetraspanins with integrins: more than meets the eye. Journal of Cell Science. 2001, 114 (Pt 23): 4143-51.
CAS
PubMed
Google Scholar
Zhang F, Kotha1 J, Jennings LK, Zhang XA: Tetraspanins and vascular functions. Cardiovascular Research. 2009, 83: 7-15. 10.1093/cvr/cvp080.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tiwari-Woodruff SK, Buznikov AG, Vu TQ, et al: OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. The Journal of Cell Biology. 2001, 153 (2): 295-305. 10.1083/jcb.153.2.295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takada Y, Ye X, Simon S: The integrins. Genome Biology. 2007, 8: 215-10.1186/gb-2007-8-5-215.
Article
PubMed
PubMed Central
Google Scholar
Benghezal M, Cornillon S, Gebbie L, et al: Synergistic Control of Cellular Adhesion by Transmembrane 9 Proteins. Molecular Biology of the Cell. 2003, 14: 2890-2899. 10.1091/mbc.E02-11-0724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergeret E, Perrin J, Williams M, Grunwald D, Engel E, Thevenon D, Taillebourg E, Bruckert F, Cosson P, Fauvarque MO: TM9SF4 is required for Drosophila cellular immunity via cell adhesion and phagocytosis. Journal of Cell Science. 2008, 121: 3325-3334. 10.1242/jcs.030163.
Article
CAS
PubMed
Google Scholar
Jayasundara N, Towle DW, Weihrauch D, Spanings-Pierrot C: Gill-specific transcriptional regulation of Na+/K+-ATPase -subunit in the euryhaline shore crab Pachygrapsus marmoratus: sequence variants and promoter structure. The Journal of Experimental Biology. 2007, 210: 2070-2081. 10.1242/jeb.004309.
Article
CAS
PubMed
Google Scholar
Tsai J, Lin H: V-type H+-ATPase and Na+, K+-ATPase in the gills of 13 euryhaline crabs during salinity acclimation. The Journal of Experimental Biology. 2007, 210 (Pt 4): 620-627.
Article
CAS
PubMed
Google Scholar
Henry R, Gehnrich S, Weihrauch D, Towle D: Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas. Comparative Biochemistry and Physiology, Part A. 2003, 136: 243-258. 10.1016/S1095-6433(03)00113-2.
Article
Google Scholar
Ramnanan CJ, Storey KB: Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lactea. J Exp Biol. 2006, 209: 677-688. 10.1242/jeb.02052.
Article
CAS
PubMed
Google Scholar
Diaz E, Schimmoller F, Pfeffer SR: A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol. 1997, 138: 283-290. 10.1083/jcb.138.2.283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schimmöller F, Díaz E, Mühlbauer B, Pfeffer SR: Characterization of a 76 kDa endosomal, multispanning membrane protein that is highly conserved throughout evolution. Gene. 1998, 216 (2): 311-318. 10.1016/S0378-1119(98)00349-7.
Article
PubMed
Google Scholar
Weihrauch D, Ziegler A, Siebers D, Towle D: Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na +/K + -ATPase, V-type H + -ATPase and functional microtubules. The Journal of Experimental Biology. 2002, 205: 2765-2775.
CAS
PubMed
Google Scholar
Suzuki M: The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels. Exp Physiol. 2006, 91: 141-147.
Article
CAS
PubMed
Google Scholar
Hartzell CH, Yu K, Xiao Q, Chien LT, Qu Z: Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels. J Physiol. 2009, 587 (10): 2127-2139. 10.1113/jphysiol.2008.163709.
Article
CAS
PubMed
Google Scholar
Hartzell C, Putzier I, Arreola J: Calcium-activated chloride channels. Annual Review of Physiology. 2005, 67: 719-58. 10.1146/annurev.physiol.67.032003.154341.
Article
CAS
PubMed
Google Scholar
Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU: The Breast Cancer β4 Integrin and Endothelial Human CLCA2 Mediate Lung Metastasis. The journal of biological chemistry. 2001, 276 (6): 25438-25446.
Article
CAS
PubMed
Google Scholar
Eggermont J: Calcium-activated Chloride Channels: (Un)known, (Un)loved?. Proc Am Thorac Soc. 2004, 22-27.
Google Scholar
Hwang PP, Perry SF: Ionic and acid-base regulation. Fish Physiology. 2010, 29: 311-344.
Article
Google Scholar
Stevens DR, Seifert R, Bufe B, Müller F, Kremmer E, Gauss R, Meyerhoff W, Kaupp UB, Lindemann B: Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature. 2001, 413: 631-635. 10.1038/35098087.
Article
CAS
PubMed
Google Scholar
Munsch T, Pape HC: Modulation of the hyperpolarization-activated cation current of rat thalamic relay neurones by intracellular pH. Journal of Physiology. 1999, 519 (2): 493-504. 10.1111/j.1469-7793.1999.0493m.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todgham AE, Hofmann GE: Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol. 2009, 212: 2579-2594. 10.1242/jeb.032540.
Article
CAS
PubMed
Google Scholar
Ahearn GA, Mandal PK, Mandal A: Calcium regulation in crustaceans during the molt cycle: a review and update. Comparative Biochemistry and Physiology Part A. 2004, 137: 247-257.
Article
Google Scholar
Lucu C, Towle D: Na+ + K+ -ATPase in gills of aquatic crustacea. Comparative Biochemistry and Physiology, Part A. 2003, 135: 195-214. 10.1016/S1095-6433(03)00064-3.
Article
Google Scholar
Serrano L, Henry R: Differential expression and induction of two carbonic anhydrase isoforms in the gills of the euryhaline green crab, Carcinus maenas, in response to low salinity. Comparative Biochemistry and Physiology, Part D. 2008, 3 (2): 186-193.
PubMed
Google Scholar
Burnett L, Dunn T, Infantino R: The Function of Carbonic Anhydrase in Crustacean Gills. Transport Processes, Iono- and Osmoregulation Heidelberg: Springer-Verlag. Edited by: Gilles R, Gilles-Baillien M. 1985, 159-1.
Chapter
Google Scholar