Cardarelli R, Kertesz A, Knebl JA: Frontotemporal dementia: a review for primary care physicians. Am Fam Physician. 2010, 82 (11): 1372-1377.
PubMed
Google Scholar
McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ: Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol. 2001, 58 (11): 1803-1809. 10.1001/archneur.58.11.1803.
Article
CAS
PubMed
Google Scholar
Morris HR, Khan MN, Janssen JC, Brown JM, Perez-Tur J, Baker M, Ozansoy M, Hardy J, Hutton M, Wood NW, et al: The genetic and pathological classification of familial frontotemporal dementia. Arch Neurol. 2001, 58 (11): 1813-1816. 10.1001/archneur.58.11.1813.
Article
CAS
PubMed
Google Scholar
Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL, Schneider JA, Grinberg LT, Halliday G, et al: Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 2007, 114 (1): 5-22. 10.1007/s00401-007-0237-2.
Article
PubMed
PubMed Central
Google Scholar
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, et al: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006, 314 (5796): 130-133. 10.1126/science.1134108.
Article
CAS
PubMed
Google Scholar
Mackenzie IR, Baborie A, Pickering-Brown S, Du Plessis D, Jaros E, Perry RH, Neary D, Snowden JS, Mann DM: Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol. 2006, 112 (5): 539-549. 10.1007/s00401-006-0138-9.
Article
PubMed
PubMed Central
Google Scholar
Sampathu DM, Neumann M, Kwong LK, Chou TT, Micsenyi M, Truax A, Bruce J, Grossman M, Trojanowski JQ, Lee VM: Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol. 2006, 169 (4): 1343-1352. 10.2353/ajpath.2006.060438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, et al: Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998, 393 (6686): 702-705. 10.1038/31508.
Article
CAS
PubMed
Google Scholar
Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD: Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998, 43 (6): 815-825. 10.1002/ana.410430617.
Article
CAS
PubMed
Google Scholar
Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B: Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA. 1998, 95 (13): 7737-7741. 10.1073/pnas.95.13.7737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S, et al: Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006, 442 (7105): 916-919. 10.1038/nature05016.
Article
CAS
PubMed
Google Scholar
Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R, Dermaut B, Martin JJ, et al: Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006, 442 (7105): 920-924. 10.1038/nature05017.
Article
CAS
PubMed
Google Scholar
Kelley BJ, Haidar W, Boeve BF, Baker M, Graff-Radford NR, Krefft T, Frank AR, Jack CR, Shiung M, Knopman DS, et al: Prominent phenotypic variability associated with mutations in Progranulin. Neurobiol Aging. 2009, 30 (5): 739-751. 10.1016/j.neurobiolaging.2007.08.022.
Article
CAS
PubMed
Google Scholar
Rademakers R, Baker M, Gass J, Adamson J, Huey ED, Momeni P, Spina S, Coppola G, Karydas AM, Stewart H, et al: Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C-- > T (Arg493X) mutation: an international initiative. Lancet Neurol. 2007, 6 (10): 857-868. 10.1016/S1474-4422(07)70221-1.
Article
CAS
PubMed
Google Scholar
Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC, van Swieten JC: Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry. 2010
Google Scholar
Josephs KA, Ahmed Z, Katsuse O, Parisi JF, Boeve BF, Knopman DS, Petersen RC, Davies P, Duara R, Graff-Radford NR, et al: Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol. 2007, 66 (2): 142-151. 10.1097/nen.0b013e31803020cf.
Article
CAS
PubMed
Google Scholar
Mackenzie IR: The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol. 2007, 114 (1): 49-54. 10.1007/s00401-007-0223-8.
Article
PubMed
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116 (2): 281-297. 10.1016/S0092-8674(04)00045-5.
Article
CAS
PubMed
Google Scholar
Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007, 447 (7146): 799-816. 10.1038/nature05874.
Article
CAS
PubMed
Google Scholar
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al: The transcriptional landscape of the mammalian genome. Science. 2005, 309 (5740): 1559-1563.
Article
CAS
PubMed
Google Scholar
Faghihi MA, Kocerha J, Modarresi F, Engstrom PG, Chalk AM, Brothers SP, Koesema E, St Laurent G, Wahlestedt C: RNAi screen indicates widespread biological function for human natural antisense transcripts. PLoS One. 2010, 5 (10):
Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, et al: Antisense transcription in the mammalian transcriptome. Science. 2005, 309 (5740): 1564-1566.
Article
PubMed
Google Scholar
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, et al: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007, 129 (7): 1311-1323. 10.1016/j.cell.2007.05.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi G, Piccoli E, Benussi L, Caso F, Redaelli V, Magnani G, Binetti G, Ghidoni R, Perani D, Giaccone G, et al: A novel progranulin mutation causing frontotemporal lobar degeneration with heterogeneous phenotypic expression. J Alzheimers Dis. 2010, 23 (1): 7-12.
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136 (2): 215-233. 10.1016/j.cell.2009.01.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, Willoughby D, Wahlestedt C, Conkright MD, Kenny PJ: Striatal microRNA controls cocaine intake through CREB signalling. Nature. 2010, 466 (7303): 197-202. 10.1038/nature09202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kocerha J, Faghihi MA, Lopez-Toledano MA, Huang J, Ramsey AJ, Caron MG, Sales N, Willoughby D, Elmen J, Hansen HF, et al: MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA. 2009, 106 (9): 3507-3512. 10.1073/pnas.0805854106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kocerha J, Kauppinen S, Wahlestedt C: microRNAs in CNS disorders. Neuromolecular Med. 2009, 11 (3): 162-172. 10.1007/s12017-009-8066-1.
Article
CAS
PubMed
Google Scholar
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007, 316 (5824): 575-579. 10.1126/science.1139089.
Article
CAS
PubMed
Google Scholar
Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009, 326 (5959): 1549-1554. 10.1126/science.1181046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, et al: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009, 2 (100): ra81-10.1126/scisignal.2000610.
Article
PubMed
Google Scholar
Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B: Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA. 2008, 105 (17): 6415-6420. 10.1073/pnas.0710263105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau P, de Strooper B: Dysregulated microRNAs in neurodegenerative disorders. Semin Cell Dev Biol. 2010, 21 (7): 768-773. 10.1016/j.semcdb.2010.01.009.
Article
CAS
PubMed
Google Scholar
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci. 2008, 28 (53): 14341-14346. 10.1523/JNEUROSCI.2390-08.2008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiao J, Herl LD, Farese RV, Gao FB: MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS One. 2010, 5 (5): e10551-10.1371/journal.pone.0010551.
Article
PubMed
PubMed Central
Google Scholar
Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, Stromberg AJ, Huang Q, Saatman KE, Nelson PT: miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol. 2010, 177 (1): 334-345. 10.2353/ajpath.2010.091202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, Finch N, Rutherford NJ, Crook RJ, Josephs KA, et al: Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet. 2008, 17 (23): 3631-3642. 10.1093/hmg/ddn257.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010, 466 (7308): 835-840. 10.1038/nature09267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen-Plotkin AS, Geser F, Plotkin JB, Clark CM, Kwong LK, Yuan W, Grossman M, Van Deerlin VM, Trojanowski JQ, Lee VM: Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet. 2008, 17 (10): 1349-1362. 10.1093/hmg/ddn023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ, Hunter TA, DeJesus-Hernandez M, Bisceglio GD, Mackenzie IR, et al: Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet. 2010, 87 (6): 890-897. 10.1016/j.ajhg.2010.11.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM: Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010, 68 (4): 654-667. 10.1016/j.neuron.2010.09.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fink JM, Hirsch BA, Zheng C, Dietz G, Hatten ME, Ross ME: Astrotactin (ASTN), a gene for glial-guided neuronal migration, maps to human chromosome 1q25.2. Genomics. 1997, 40 (1): 202-205. 10.1006/geno.1996.4538.
Article
CAS
PubMed
Google Scholar
Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM: Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci. 2010, 30 (21): 7281-7289. 10.1523/JNEUROSCI.0490-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovacs GG, Botond G, Budka H: Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol. 2010, 119 (4): 389-408. 10.1007/s00401-010-0658-1.
Article
CAS
PubMed
Google Scholar
Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, Kwong LK, Lee VM, Schellenberg GD, Bird TD: A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain. 2007, 130 (Pt 5): 1360-1374.
Article
CAS
PubMed
Google Scholar
Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S: A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci. 2010, 30 (24): 8083-8095. 10.1523/JNEUROSCI.1091-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCorquodale Iii D, Ozomaro U, Huang J, Montenegro G, Kushman A, Citrigno L, Price J, Speziani F, Pericak-Vance MA, Zuchner S: Mutation screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin Genet. 2010
Google Scholar
Bolliger MF, Martinelli DC, Sudhof TC: The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc Natl Acad Sci USA. 2011, 108 (6): 2534-2539. 10.1073/pnas.1019577108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montgomery RL, van Rooij E: Therapeutic advances in MicroRNA targeting. J Cardiovasc Pharmacol. 2011, 57 (1): 1-7. 10.1097/FJC.0b013e3181f603d0.
Article
CAS
PubMed
Google Scholar
Seto AG: The road toward microRNA therapeutics. Int J Biochem Cell Biol. 2010, 42 (8): 1298-1305. 10.1016/j.biocel.2010.03.003.
Article
CAS
PubMed
Google Scholar
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001, 98 (9): 5116-5121. 10.1073/pnas.091062498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Westfall PH, Zaykin DV, Young SS: Multiple tests for genetic effects in association studies. Methods Mol Biol. 2002, 184: 143-168.
CAS
PubMed
Google Scholar
de Hoon MJ, Imoto S, Nolan J, Miyano S: Open source clustering software. Bioinformatics. 2004, 20 (9): 1453-1454. 10.1093/bioinformatics/bth078.
Article
CAS
PubMed
Google Scholar