Lorence A, Nessler CL: Camptothecin, over four decades of surprising findings. Phytochemistry. 2004, 65 (20): 2735-49. 10.1016/j.phytochem.2004.09.001.
Article
CAS
PubMed
Google Scholar
Pommier Y: DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition. Chem Rev. 2009, 109 (7): 2894-2902. 10.1021/cr900097c.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oberlies NH, Kroll DJ: Camptothecin and taxol: historic achievements in natural products research. J Nat Prod. 2004, 67: 129-135. 10.1021/np030498t.
Article
CAS
PubMed
Google Scholar
Lu H, McKnight TD: Tissue-Specific Expression of the β-Subunit of Tryptophan Synthase in Camptotheca acuminata, an Indole Alkaloid-Producing Plant. Plant Physiol. 1999, 120: 43-52. 10.1104/pp.120.1.43.
Article
CAS
PubMed
PubMed Central
Google Scholar
López-Meyer M, Nessler CL: Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J. 1997, 11 (6): 1167-1175. 10.1046/j.1365-313X.1997.11061167.x.
Article
PubMed
Google Scholar
Burnett RJ, Maldonado-Mendoza IE, McKnight TD, Nessler CL: Expression of a 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene from Camptotheca acuminata Is Differentially Regulated by Wounding and Methyl Jasmonate. Plant Physiol. 1994, 103: 41-48.
Article
Google Scholar
Yao H, Gong Y, Zuo K, Ling H, Qiu C, Zhang F, Wang Y, Pi Y, Liu X, Sun X, et al: Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase from Camptotheca acuminata. J Plant Physiol. 2008, 165 (2): 203-213. 10.1016/j.jplph.2006.12.001.
Article
CAS
PubMed
Google Scholar
Keat HT, Elizabeth G, McKnight TD: Characterization and cloning of 10-hydroxygeraniol oxidoreductase. Plant Biology. 2000
Google Scholar
Collua G, Unvera N, Peltenburg-Loomana AMG, van der Heijdena R, Verpoortea R, Memelink J: Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett. 2001, 508: 215-220. 10.1016/S0014-5793(01)03045-9.
Article
Google Scholar
Irmler S, SchroÈ der G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, SchroÈ der J: Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 2000, 24 (6): 797-804. 10.1046/j.1365-313x.2000.00922.x.
Article
CAS
PubMed
Google Scholar
Connor SEO, Maresh JJ: Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep. 2006, 23: 532-547. 10.1039/b512615k.
Article
Google Scholar
Coon MJ: Cytochrome P450: nature's most versatile biological catalyst. Annu Rev Pharmacol Toxicol. 2005, 45: 1-25. 10.1146/annurev.pharmtox.45.120403.100030.
Article
CAS
PubMed
Google Scholar
Morant M, Bak S, Moller BL, Werck-Reichhart D: Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin biotech. 2003, 14 (2): 151-162. 10.1016/S0958-1669(03)00024-7.
Article
CAS
PubMed
Google Scholar
Hutchinson CR, Heckendorf AH, Straughn JL, Daddona PE, Cane DE: Biosynthesis of camptothecin: III. Definition of strictosamide as the penultimate biosynthetic precursor assisted by carbon-13 and deuterium NMR spectroscopy. J Am Chem Soc. 1979, 101: 3358-3369. 10.1021/ja00506a037.
Article
CAS
Google Scholar
Pasqua G, Monacelli B, Valletta A: Cellular localisation of the anti-cancer drug camptothecin in Camptotheca acuminata Decne (Nyssaceae). Eur J Histochem. 2004, 48: 321-328.
PubMed
Google Scholar
Valletta A, Trainotti L, Santamaria AR, Psaqua G: Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae). BMC Plant Biol. 2010, 10: 1-27. 10.1186/1471-2229-10-1.
Article
Google Scholar
Gaertner LS, Murray CL, Morris CE: Transepithelial transport of nicotine and vinblastine in isolated malpighian tubules of the tobacco hornworm (Manduca sexta) suggests a P-glycoprotein-like mechanism. J Exp Biol. 1998, 201: 2637-2645.
CAS
PubMed
Google Scholar
Sakai K, Shitan N, Sato F, Ueda K, Yazaki K: Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J Exp Bot. 2002, 53: 1879-1886. 10.1093/jxb/erf052.
Article
CAS
PubMed
Google Scholar
Terasaka K, Sakai K, Sato F, Yamamoto H, Yazaki K: Thalictrum minus cell cultures and ABC-transporter. Phytochemistry. 2003, 62: 483-489. 10.1016/S0031-9422(02)00548-4.
Article
CAS
PubMed
Google Scholar
Emrich SJ, Barbazuk WB, Li L, Schnable PS: Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 2007, 17: 69-73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, et al: The developmental dynamics of the maize leaf transcriptome. Nat Genet. 2010, 42: 1060-1069. 10.1038/ng.703.
Article
CAS
PubMed
Google Scholar
Liang CW, Zhang XW, Zou J, Xu D, Su F, Ye NH: Identification of miRNA from Porphyra yezoensis by High-Throughput Sequencing and Bioinformatics Analysis. PLoS One. 2010, 5 (5): e10698-10.1371/journal.pone.0010698.
Article
PubMed
PubMed Central
Google Scholar
Crawford JE, Guelbeogo WM, Vernick KD, Sagnon NF, Lazzaro BP: De Novo Transcriptome Sequencing in Anopheles funestus Using Illumina RNA-Seq Technology. PLoS One. 2010, 5 (12): e14202-10.1371/journal.pone.0014202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, et al: 454 EST analysis detects genes putatively involving in ginsenoside Biosynthesis in Panaxginseng. Plant cell Rep. 2011, 30: 1593-1601. 10.1007/s00299-011-1070-6.
Article
CAS
PubMed
Google Scholar
Luo HM, Li Y, Sun C, Wu Q, Song JY, Sun YZ, Steinmetz A, Chen SL: Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biology. 2010, 10: 209-10.1186/1471-2229-10-209.
Article
PubMed
PubMed Central
Google Scholar
Lopez-Meyer M, Nessler CL, McKnight TD: Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med. 1994, 60: 558-560. 10.1055/s-2006-959571.
Article
CAS
PubMed
Google Scholar
Li SY, Yi YJ, Wang YJ, Zhang ZZ, Beasley RS: Camptothecin accumulation and variations in Camptotheca. Plant Med. 2002, 68: 1010-1016. 10.1055/s-2002-35652.
Article
CAS
Google Scholar
KEGG Database. [http://www.genome.jp/kegg/]
Nr Database. [ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz]
Nt Database. [ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nt.gz]
The TAIR Database. [ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR9_blastsets/]
The UniProt-SwissProt Database. [http://www.uniprot.org/downloads]
Berardini TZ, Mundodi S, Reiser L, Huala E, Garcia-Hernandez M, Zhang P, Mueller LA, Yoon J, Doyle A, Lander G: Functional annotation of the Arabidopsis genome using controlled vocabularies. Plant physiol. 2004, 135 (2): 745-755. 10.1104/pp.104.040071.
Article
CAS
PubMed
PubMed Central
Google Scholar
The WoLF PSORT Protein Subcellular Localization Prediction website. [http://wolfpsort.org/]
Yendo ACA, Gosmann FCG, Fett-Neto AG: Production of Plant Bioactive Triterpenoid Saponins: Elicitation Strategies and Target Genes to Improve Yields. Mol Biotechnol. 2010, 46: 94-104. 10.1007/s12033-010-9257-6.
Article
CAS
PubMed
Google Scholar
Aerts RJ, Gisi D, Carolis ED, Luca VD, Baumann TW: Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J. 1994, 5: 635-643. 10.1111/j.1365-313X.1994.00635.x.
Article
CAS
Google Scholar
Rischer H, Orešič M, Seppa" nen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inze D, Oksman-Caldentey KM, Goossens A: Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci. 2006, 103 (14): 5614-5619. 10.1073/pnas.0601027103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song SH, Byun SY: Elicitation of Camptothecin Production in Cell Cultures of Camptotheca acuminata. Biotechnol Bioprocess Eng. 1998, 3: 91-95. 10.1007/BF02932509.
Article
Google Scholar
Belhadj A, Telef N, Saigne C, Cluzet S, Barrieu F, Said Hamdi, Me'rillon JM: Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol Bioch. 2008, 46: 493-499. 10.1016/j.plaphy.2007.12.001.
Article
CAS
Google Scholar
López-Meyer M, Nessler CL: Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J. 1997, 11: 1167-1175. 10.1046/j.1365-313X.1997.11061167.x.
Article
PubMed
Google Scholar
Maldonado-Mendoza IE, Vincent RM, Nessler CL: Molecular characterization of three differentially expressed members of the Camptotheca acuminata 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family. Plant Mol Bio. 1997, 34: 781-790. 10.1023/A:1005866813347.
Article
CAS
Google Scholar
Seki H, Ohyama K, Sawai S, Mizutani M, Ohnishi T, Sudo H, Akashi T, Aoki T, Saito K, Muranaka T: Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin. Proc Natl Acad Sci. 2008, 105: 14204-14209. 10.1073/pnas.0803876105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak Søren: Comparative Genomics of Rice and Arabidopsis. Analysis of 727 Cytochrome P450 Genes and Pseudogenes from a Monocot and a Dicot. Plant Physiol. 2004, 135: 756-772. 10.1104/pp.104.039826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ketudat Cairns JR, Esen A: β-Glucosidases. Cell Mol Life Sci. 2010, 67: 3389-3405. 10.1007/s00018-010-0399-2.
Article
CAS
PubMed
Google Scholar
Nomura T, Quesada AL, Kutchan TM: The New β-D-Glucosidase in Terpenoid-Isoquinoline Alkaloid Biosynthesis in Psychotria ipecacuanha. J Biol Chem. 2008, 283: 34650-34659. 10.1074/jbc.M806953200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warzechaa H, Gerasimenkoa I, Kutchan TM, StoÈ ckigt J: Molecular cloning and functional bacterial expression of a plant glucosidase specically involved in alkaloid biosynthesis. Phytochemistry. 2000, 54: 657-666. 10.1016/S0031-9422(00)00175-8.
Article
Google Scholar
Barleben L, Panjikar S, Ruppert M, Koepke J, Stöckigt J: Molecular Architecture of Strictosidine Glucosidase: The Gateway to the Biosynthesis of the Monoterpenoid Indole Alkaloid Family. Plant Cell. 2007, 19: 2886-2897. 10.1105/tpc.106.045682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sirikantaramas S, Sudo H, Asano T, Yamazaki M, Saito K: Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry. 2007, 68: 2881-2886. 10.1016/j.phytochem.2007.08.028.
Article
CAS
PubMed
Google Scholar
Li SY, Yi YJ, Wang YJ, Zhang ZZ, Beasley RS: Camptothecin accumulation and variations in Camptotheca. Planta Med. 2002, 68: 1010-1016. 10.1055/s-2002-35652.
Article
CAS
PubMed
Google Scholar
Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K: Involvement of CjMDR1, a plant MDR-type ABC protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci. 2003, 100: 751-756. 10.1073/pnas.0134257100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorence A, Medina-Bolivar F, Nessler CL: Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep. 2004, 22: 437-441. 10.1007/s00299-003-0708-4.
Article
CAS
PubMed
Google Scholar
Liu ZJ, Carpenter SB, Bourgeois WJ, Yu Y, Constantin RJ, Falcon MJ, Adams JC: Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata. Tree Physiology. 1998, 18: 265-270.
Article
CAS
PubMed
Google Scholar
Pi Y, Liao Z, Jiang K, Huang B, Deng Z, Zhao D, Zeng H, Sun X, Tang K: Molecular cloning, characterization and expression of a jasmonate biosynthetic pathway gene encoding allene oxide cyclase from Camptotheca acuminata. Biosci Rep. 2008, 28: 349-355. 10.1042/BSR20060001.
Article
CAS
PubMed
Google Scholar