Whiteford N, Haslam N, Weber G, Prügel-Bennett A, Essex JW, Roach PL, Bradley M, Neylon C: An analysis of the feasibility of short read sequencing. Nucleic Acids Res. 2005, 33 (19): e171-10.1093/nar/gni170. [http://nar.oxfordjournals.org/content/33/19/e171.abstract]
Article
PubMed
PubMed Central
Google Scholar
Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ: Unstable tandem repeats in promoters confer transcriptional evolvability. Science. 2009, 324 (5931): 1213-1216. 10.1126/science.1170097. [http://www.sciencemag.org/content/324/5931/1213.abstract]
Article
PubMed
PubMed Central
Google Scholar
Cordaux R, Batzer MA: The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009, 10 (10): 691-703. 10.1038/nrg2640.
Article
PubMed
PubMed Central
Google Scholar
Treangen TJ, Abraham AL, Touchon M, Rocha EPC: Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiology Reviews. 2009, 33 (3): 539-571. 10.1111/j.1574-6976.2009.00169.x.
Article
PubMed
Google Scholar
Huda A, Mariño-Ramírez L, Landsman D, Jordan IK: Repetitive DNA elements, nucleosome binding and human gene expression. Gene. 2009, 436 (1-2): 12-22. 10.1016/j.gene.2009.01.013.
Article
PubMed
PubMed Central
Google Scholar
Whiteford N, Haslam N, Weber G, Prügel-Bennett A, Essex JW, Neylon C: Visualising the repeat structure of genomic sequences. Complex Systems. 2008, 17: 381-398.
Google Scholar
Stewart M, McLachlan AD: Fourteen actin-binding sites on tropomyosin?. Nature. 1975, 257: 331-333. 10.1038/257331a0.
Article
PubMed
Google Scholar
Parry DAD: Analysis of the primary sequence of α-tropomyosin from rabbit skeletal muscle. J. Mol. Biol. 1975, 98: 519-535. 10.1016/S0022-2836(75)80084-2.
Article
PubMed
Google Scholar
McLachlan AD, Stewart M: The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Math Biol. 1976, 103 (2): 271-298. [http://www.sciencedirect.com/science/article/pii/0022283676903132]
Google Scholar
Dowling LM, Crewther WG, Parry DA: Secondary structure of component 8c-1 of alpha-keratin. An analysis of the amino acid sequence. Biochem J. 1986, 236 (3): 705-712.
Article
PubMed
PubMed Central
Google Scholar
Makeev VJu, Tumanyan VG: Search of periodicities in primary structure of biopolymers: a general Fourier approach. Comput Appl Biosci. 1996, 12: 49-54. 10.1093/bioinformatics/12.1.49.
PubMed
Google Scholar
Veljković V, Cosić I, Dimitrijević B, Lalović D: Is it possible to analyze DNA and protein sequences by the methods of digital signal processing?. IEEE Trans Biomed Eng. 1985, 32 (5): 337-341.
Article
PubMed
Google Scholar
Silverman BD, Linsker R: A measure of DNA periodicity. J Theor Biol. 1986, 118 (3): 295-300. 10.1016/S0022-5193(86)80060-1. [http://www.sciencedirect.com/science/article/pii/S0022519386800601]
Article
PubMed
Google Scholar
Benson DC: Fourier methods for biosequence analysis. Nucl. Acids. Res. 1990, 18 (21): 6305-10.1093/nar/18.21.6305.
Article
PubMed
PubMed Central
Google Scholar
Anastassiou D: Frequency-domain analysis of biomolecular sequences. Bioinformatics. 2000, 16 (12): 1073-10.1093/bioinformatics/16.12.1073.
Article
PubMed
Google Scholar
Anastassiou D: Genomic signal processing. IEEE Signal Processing Mag. 2001, 8-20.
Google Scholar
Fukushima A, Ikemura T, Kinouchi M, Oshima T, Kudo Y, Mori H, Kanaya S: Periodicity in prokaryotic and eukaryotic genomes identified by power spectrum analysis. Gene. 2002, 300: 203-211. 10.1016/S0378-1119(02)00850-8.
Article
PubMed
Google Scholar
Akhtar M, Epps J, Ambikairajah E: Signal processing in sequence analysis: advances in eukaryotic gene prediction. IEEE Journal on Selected Topics in Signal Processing. 2008, 2 (3): 310-321.
Article
Google Scholar
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton J, Pain A, Nelson K, Bowman S, et al: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419 (6906): 498-511. 10.1038/nature01097.
Article
PubMed
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al: A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics. 2007, 8 (12): 973-982. 10.1038/nrg2165.
Article
PubMed
Google Scholar
Sharma D, Issac B, Raghava GPS, Ramaswamy R: Spectral Repeat Finder (SRF): identification of repetitive sequences using Fourier transformation. Bioinformatics. 2004, 20 (9): 1405-1412. 10.1093/bioinformatics/bth103.
Article
PubMed
Google Scholar
Brodzik A: Quaternionic periodicity transform: an algebraic solution to the tandem repeat detection problem. Bioinformatics. 2007, 23 (6): 694-10.1093/bioinformatics/btl674.
Article
PubMed
Google Scholar
Epps J: A hybrid technique for the periodicity characterization of genomic sequence data. EURASIP J Bioinform Syst Biol. 2009, 924601:
Google Scholar
Tiwari S, Ramachandran S, Bhattacharya A, Bhattacharya S, Ramaswamy R: Prediction of probable genes by Fourier analysis of genomic sequences. Comput. Appl. Biosci. 1997, 13 (3): 263-270.
PubMed
Google Scholar
Issac B, Singh H, Kaur H, Raghava GPS: Locating probable genes using Fourier transform approach. Bioinformatics. 2002, 18: 196-197. 10.1093/bioinformatics/18.1.196. [http://bioinformatics.oxfordjournals.org/content/18/1/196.abstract]
Article
PubMed
Google Scholar
Kotlar D, Lavner Y: Gene prediction by spectra rotation measure: a new method for identifying protein-coding regions. Genome Res. 2003, 13: 1930-1937.
PubMed
PubMed Central
Google Scholar
Gao J, Qi Y, Cao Y, Tung WW: Protein coding sequence identification by simultaneously characterizing the periodic and random features of DNA sequences. J Biomed Biotechnol. 2005, 2005: 139-146. 10.1155/JBB.2005.139.
Article
PubMed
PubMed Central
Google Scholar
Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999, 27 (2): 573-580. 10.1093/nar/27.2.573. [http://nar.oxfordjournals.org/content/27/2/573.abstract]
Article
PubMed
PubMed Central
Google Scholar
Brigham EO: The fast Fourier transform and its applications. 1988, London: Prentice-Hall International
Google Scholar
Lobzin VV, Chechetkin VR: Order and correlations in genomic DNA sequences. The spectral approach. Physics-Uspekhi. 2000, 43: 55-78. 10.1070/PU2000v043n01ABEH000611.
Article
Google Scholar
Wang L, Schonfeld D: Mapping Equivalence for Symbolic Sequences: Theory and Applications. IEEE Transactions on Signal Processing. 2009, 57 (12): 4895-4905.
Article
Google Scholar
McLachlan AD: Multichannel Fourier analysis of patterns in protein sequences. J. Phys. Chem. 1993, 97 (12): 3000-3006. 10.1021/j100114a028.
Article
Google Scholar
McLachlan AD, Karn J: Periodic features in the amino acid sequence of nematode myosin rod. J. Mol. Biol. 1983, 164 (4): 605-626. 10.1016/0022-2836(83)90053-0.
Article
PubMed
Google Scholar
Taylor WR, Heringa J, Baud F, Flores TP: A Fourier analysis of symmetry in protein structure. Protein Eng. 2002, 15 (2): 79-89. 10.1093/protein/15.2.79.
Article
PubMed
Google Scholar
Gruber M, Soding J, Lupas AN: REPPER-repeats and their periodicities in fibrous proteins. Nucl. Acids. Res. 2005, 33 (Web Server Issue): W239-
Article
PubMed
PubMed Central
Google Scholar
Paar V, Pavin N, Basar I, Rosandić M, Glunčić M, Paar N: Hierarchical structure of cascade of primary and secondary periodicities in Fourier power spectrum of alphoid higher order repeats. BMC Bioinformatics. 2008, 9: 466-10.1186/1471-2105-9-466.
Article
PubMed
PubMed Central
Google Scholar
Weber G, Essex JW, Neylon C: Probing the microscopic flexibility of DNA from melting temperatures. Nature Physics. 2009, 5: 769-773. 10.1038/nphys1371.
Article
Google Scholar
Frigo M, Johnson SG: The Design and Implementation of FFTW3. Proceedings of the IEEE. 2005, 93 (2): 216-231. Special issue on “Program Generation, Optimization, and Platform Adaptation”
Article
Google Scholar