Gene signature. [http://en.wikipedia.org/wiki/Gene_signature]
Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, et al: The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol. 2010, 28 (8): 827-838. 10.1038/nbt.1665.
Article
CAS
PubMed
Google Scholar
Ding C, Peng H: Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005, 3: 185-205. 10.1142/S0219720005001004.
Article
CAS
PubMed
Google Scholar
Raychaudhuri S, Sutphin PD, Chang JT, Altman RB: Basic microarray analysis: grouping and feature reduction. Trends Biotechnol. 2001, 19: 189-193. 10.1016/S0167-7799(01)01599-2.
Article
CAS
PubMed
Google Scholar
Huang T, Cui W, Hu L, Feng K, Li Y-X, Cai Y-D: Prediction of pharmacological and xenobiotic responses to drugs based on time course gene expression profiles. PLoS One. 2009, 4: e8126-10.1371/journal.pone.0008126.
Article
PubMed Central
PubMed
Google Scholar
Fishel I, Kaufman A, Ruppin E: Meta-analysis of gene expression data: a predictor-based approach. Bioinformatics. 2007, 23: 1599-1606. 10.1093/bioinformatics/btm149.
Article
CAS
PubMed
Google Scholar
Natsoulis G, Pearson CI, Gollub J, P Eynon B, Ferng J, Nair R, Idury R, Lee MD, Fielden MR, Brennan RJ, et al: The liver pharmacological and xenobiotic gene response repertoire. Mol Syst Biol. 2008, 4: 175-
Article
PubMed Central
PubMed
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Machine Learning. 2002, 46: 389-422. 10.1023/A:1012487302797.
Article
Google Scholar
Liu Q, Sung AH, Chen Z, Liu J, Huang X, Deng Y: Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data. PLoS One. 2009, 4: e8250-10.1371/journal.pone.0008250.
Article
PubMed Central
PubMed
Google Scholar
Natsoulis G, Ghaoui LE, Lanckriet GRG, Tolley AM, Leroy F, Dunlea S, Eynon BP, Pearson CI, Tugendreich S, Jarnagin K: Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures. Genome Res. 2005, 15: 724-736. 10.1101/gr.2807605.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim SY, Kim YS: A gene sets approach for identifying prognostic gene signatures for outcome prediction. BMC Genomics. 2008, 9: 177-187. 10.1186/1471-2164-9-177.
Article
PubMed Central
PubMed
Google Scholar
Brown M, Grundy W, Lin D, Cristianini N, Sugnet C, Furey T, Ares MJ, Haussler D: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA. 2000, 97: 262-267. 10.1073/pnas.97.1.262.
Article
PubMed Central
CAS
PubMed
Google Scholar
Foekens JA, Atkins D, Zhang Y, Sweep FCGJ, Harbeck N, Paradiso A, Cufer T, Sieuwerts AM, Talantov D, Span PN, et al: Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol. 2006, 24: 1665-1671. 10.1200/JCO.2005.03.9115.
Article
CAS
PubMed
Google Scholar
Hess K, Anderson K, Symmans W, Valero V, Ibrahim N, Mejia J, Booser D, Theriault RL, Buzdar AU, Dempsey PJ, et al: Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol. 2006, 24: 4236-4244. 10.1200/JCO.2006.05.6861.
Article
CAS
PubMed
Google Scholar
Moggs J, Murphy T, Lim F, Moore D, Stuckey R, Antrobus K, Kimber I, Orphanides G: Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by aberrant regulation of cell cycle genes. J Mol Endocrinol. 2005, 34: 535-551. 10.1677/jme.1.01677.
Article
CAS
PubMed
Google Scholar
Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, et al: Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005, 24: 4660-4671. 10.1038/sj.onc.1208561.
Article
CAS
PubMed
Google Scholar
Lin C, Vega V, Thomsen J, Zhang T, Kong S, Xie M, Chiu K, Lipovich L, Barnett DH, Stossi F, et al: Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 2007, 3: e87-10.1371/journal.pgen.0030087.
Article
PubMed Central
PubMed
Google Scholar
Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005, 365: 671-679.
Article
CAS
PubMed
Google Scholar
Zeeberg B, Feng W, Wang G, Wang M, Fojo A, Sunshine M, Narasimhan S, Kane D, Reinhold W, Lababidi S, et al: GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biology. 2003, 4: R28-10.1186/gb-2003-4-4-r28.
Article
PubMed Central
PubMed
Google Scholar
Chen S-C, Chang H-K, Lin Y-C, Hsueh S, Cheung Y-C, Leung W-M, Tsai C-S, Lo Y-F, Tsai H-P, Shen S-C, et al: High pathologic complete response in HER 2-positive locally advanced breast cancer after primary systemic chemotherapy with weekly docetaxel and epirubicin. Japan J Clin Oncol. 2008, 38: 99-105. 10.1093/jjco/hym172.
Article
Google Scholar
Siek J, Lee LQ, Lumsdaine A: The Boost Graph Library: User Guide and Reference Manual. 2002, Addison-Wesley
Google Scholar
Chaurasia G, Iqbal Y, Hänig C, Herzel H, Wanker EE, Futschik ME: UniHI: an entry gate to the human protein interactome. Nucleic Acids Res. 2006, 35: D590-D594.
Article
PubMed Central
PubMed
Google Scholar
Li W, Yang Y: How many genes are needed for a discriminant microarray data analysis?. 2002, Kluwer Academic, 137-150.
Google Scholar
Barnett DH, Sheng S, Charn TH, Waheed A, Sly WS, Lin C-Y, Liu ET, Katzenellenbogen BS: Estrogen receptor regulation of carbonic anhydrase XII through a distal enhancer in breast cancer. Cancer Res. 2008, 68: 3505-3515. 10.1158/0008-5472.CAN-07-6151.
Article
CAS
PubMed
Google Scholar
Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 2007, 35: D26-D31. 10.1093/nar/gkl993.
Article
PubMed Central
CAS
PubMed
Google Scholar
Andre F, Hatzis C, Anderson K, Sotiriou C, Mazouni C, Mejia J, Wang B, Hortobagyi GN, Symmans WF, Pusztai L: Microtubule-associated protein-tau is a bifunctional predictor of endocrine sensitivity and chemotherapy resistance in estrogen receptor-positive breast cancer. Clin Cancer Res. 2007, 13: 2061-2067. 10.1158/1078-0432.CCR-06-2078.
Article
CAS
PubMed
Google Scholar
Lacroix M, Leclercq G: About GATA3, HNF3A, and XBP1, three genes co-expressed with the oestrogen receptor-α gene (ESR1) in breast cancer. Mol Cell Endocrinol. 2004, 219: 1-7. 10.1016/j.mce.2004.02.021.
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005, 102: 15545-15550. 10.1073/pnas.0506580102.
Article
PubMed Central
CAS
PubMed
Google Scholar
van't Veer LJ, Dai H, van der Vijver, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415: 530-653. 10.1038/415530a.
Article
Google Scholar
Pawitan Y, Bjöhle J, Amler L, Borg AL, Egyhazi S, Hall P, Han X, Holmberg L, Huang F, Klaar S, et al: Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res. 2005, 7: R953-R964. 10.1186/bcr1325.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, et al: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New Engl J Med. 2004, 351: 2817-2826. 10.1056/NEJMoa041588.
Article
CAS
PubMed
Google Scholar
Shen R, Chinnaiyan AM, Ghosh D: Pathway analysis reveals functional convergence of gene expression profiles in breast cancer. BMC Bioinformatics. 2008, 1: 28-
Google Scholar
Lindley DV: The philosophy of statistics. The Statistician. 2000, 49: 293-337. 10.1111/1467-9884.00238.
Google Scholar
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003, e15-31
Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques. 2005, San Francisco: Morgan Kaufmann, 2
Google Scholar
Han J, Kamber M: Data Mining: Concepts and Techniques. 2001, San Francisco: Morgan Kaufmann
Google Scholar
Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H, Pisto T, Saarela M, Skotheim R, Björkman M, et al: Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 2008, 9: R139-10.1186/gb-2008-9-9-r139.
Article
PubMed Central
PubMed
Google Scholar
Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000, 16: 412-424. 10.1093/bioinformatics/16.5.412.
Article
CAS
PubMed
Google Scholar
Rody A, Holtrich U, Solbach C, Kourtis K, Minckwitz Gv, Engels K, Kissler S, Gätje R, Karn T, Kaufmann M: Methylation of estrogen receptor ß promoter correlates with loss of ER-ß expression in mammary carcinoma and is an early indication marker in premalignant lesions. Endocr Relat Cancer. 2005, 12: 903-916. 10.1677/erc.1.01088.
Article
CAS
PubMed
Google Scholar
Wilson CL, Sims AH, Howell A, Miller CJ, Clarke RB: Effects of oestrogen on gene expression in epithelium and stroma of normal human breast tissue. Endocr Relat Cancer. 2006, 13: 617-628. 10.1677/erc.1.01165.
Article
CAS
PubMed
Google Scholar
Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T: Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 2003, 100: 5974-5979. 10.1073/pnas.0931261100.
Article
PubMed Central
CAS
PubMed
Google Scholar