Kuang R, Gu J, Cai H, Wang Y: Improved prediction of malaria degradomes by supervised learning with SVM and profile kernel. Genetica. 2009, 136 (1): 189-209. 10.1007/s10709-008-9336-9.
PubMed Central
PubMed
Google Scholar
Wang Y, Wu Y: Computer assisted searches for drug targets with emphasis on malarial proteases and their inhibitors. Curr Drug Targets Infect Disord. 2004, 4 (1): 25-40. 10.2174/1568005043480952.
PubMed
Google Scholar
Wu Y, Wang X, Liu X, Wang Y: Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res. 2003, 13 (4): 601-616. 10.1101/gr.913403.
PubMed Central
CAS
PubMed
Google Scholar
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2010, D561-568. 39 Database
LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C, et al: A protein interaction network of the malaria parasite Plasmodium falciparum. Nature. 2005, 438 (7064): 103-107. 10.1038/nature04104.
CAS
PubMed
Google Scholar
Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1 (1): E5-
PubMed Central
PubMed
Google Scholar
Bozdech Z, Zhu J, Joachimiak MP, Cohen FE, Pulliam B, DeRisi JL: Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 2003, 4 (2): R9-10.1186/gb-2003-4-2-r9.
PubMed Central
PubMed
Google Scholar
Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ, et al: Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003, 301 (5639): 1503-1508. 10.1126/science.1087025.
CAS
PubMed
Google Scholar
Florens L, Liu X, Wang YF, Yang SG, Schwartz O, Peglar M, Carucci DJ, Yates JR, Wu YM: Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol Biochem Parasit. 2004, 135 (1): 1-11. 10.1016/j.molbiopara.2003.12.007.
CAS
Google Scholar
Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, et al: A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002, 419 (6906): 520-526. 10.1038/nature01107.
CAS
PubMed
Google Scholar
Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters AP, Stunnenberg HG, et al: Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002, 419 (6906): 537-542. 10.1038/nature01111.
CAS
PubMed
Google Scholar
Lasonder E, Janse CJ, van Gemert GJ, Mair GR, Vermunt AM, Douradinha BG, van Noort V, Huynen MA, Luty AJ, Kroeze H, et al: Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog. 2008, 4 (10): e1000195-10.1371/journal.ppat.1000195.
PubMed Central
PubMed
Google Scholar
Crompton PD, Pierce SK, Miller LH: Advances and challenges in malaria vaccine development. J Clin Invest. 2010, 120 (12): 4168-4178. 10.1172/JCI44423.
PubMed Central
CAS
PubMed
Google Scholar
Carlton J: The Plasmodium vivax genome sequencing project. Trends Parasitol. 2003, 19 (5): 227-231. 10.1016/S1471-4922(03)00066-7.
CAS
PubMed
Google Scholar
Carlton J, Silva J, Hall N: The genome of model malaria parasites, and comparative genomics. Curr Issues Mol Biol. 2005, 7 (1): 23-37.
CAS
PubMed
Google Scholar
Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, et al: Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008, 455 (7214): 757-763. 10.1038/nature07327.
PubMed Central
CAS
PubMed
Google Scholar
Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, et al: Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature. 2002, 419 (6906): 512-519. 10.1038/nature01099.
CAS
PubMed
Google Scholar
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, et al: Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002, 419 (6906): 498-511. 10.1038/nature01097.
CAS
PubMed
Google Scholar
Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, Mourier T, Mistry J, Pasini EM, Aslett MA, et al: The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008, 455 (7214): 799-803. 10.1038/nature07306.
PubMed Central
CAS
PubMed
Google Scholar
Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, et al: Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science. 1999, 285 (5433): 1573-1576. 10.1126/science.285.5433.1573.
CAS
PubMed
Google Scholar
Wiesner J, Jomaa H: Isoprenoid biosynthesis of the apicoplast as drug target. Curr Drug Targets. 2007, 8 (1): 3-13. 10.2174/138945007779315551.
CAS
PubMed
Google Scholar
Dahl EL, Rosenthal PJ: Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol. 2008, 24 (6): 279-284. 10.1016/j.pt.2008.03.007.
CAS
PubMed
Google Scholar
Jana S, Paliwal J: Novel molecular targets for antimalarial chemotherapy. Int J Antimicrob Agents. 2007, 30 (1): 4-10. 10.1016/j.ijantimicag.2007.01.002.
CAS
PubMed
Google Scholar
Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins CR, Hopp CS, Bright AT, Westenberger S, Winzeler E, Blackman MJ, et al: A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science. 2010, 328 (5980): 910-912. 10.1126/science.1188191.
PubMed Central
CAS
PubMed
Google Scholar
Ecker A, Lakshmanan V, Sinnis P, Coppens I, Fidock DA: Evidence that mutant PfCRT facilitates the transmission to mosquitoes of chloroquine-treated Plasmodium gametocytes. J Infect Dis. 2011, 203 (2): 228-236. 10.1093/infdis/jiq036.
PubMed Central
CAS
PubMed
Google Scholar
Joet T, Eckstein-Ludwig U, Morin C, Krishna S: Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci USA. 2003, 100 (13): 7476-7479. 10.1073/pnas.1330865100.
PubMed Central
CAS
PubMed
Google Scholar
Johnson DJ, Fidock DA, Mungthin M, Lakshmanan V, Sidhu AB, Bray PG, Ward SA: Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents. Mol Cell. 2004, 15 (6): 867-877. 10.1016/j.molcel.2004.09.012.
PubMed Central
CAS
PubMed
Google Scholar
Kirk K, Howitt SM, Broer S, Saliba KJ, Downie MJ: Purine uptake in Plasmodium: transport versus metabolism. Trends Parasitol. 2009, 25 (6): 246-249. 10.1016/j.pt.2009.03.006.
CAS
PubMed
Google Scholar
Kirk K, Saliba KJ: Targeting nutrient uptake mechanisms in Plasmodium. Curr Drug Targets. 2007, 8 (1): 75-88. 10.2174/138945007779315560.
CAS
PubMed
Google Scholar
Patel AP, Staines HM, Krishna S: New antimalarial targets: the example of glucose transport. Travel Med Infect Dis. 2008, 6 (1-2): 58-66. 10.1016/j.tmaid.2008.01.005.
PubMed
Google Scholar
Blackman MJ: Malarial proteases and host cell egress: an 'emerging' cascade. Cell Microbiol. 2008, 10 (10): 1925-1934. 10.1111/j.1462-5822.2008.01176.x.
PubMed Central
CAS
PubMed
Google Scholar
Rosenthal PJ: Cysteine proteases of malaria parasites. Int J Parasitol. 2004, 34 (13-14): 1489-1499. 10.1016/j.ijpara.2004.10.003.
CAS
PubMed
Google Scholar
Wang F, Krai P, Deu E, Bibb B, Lauritzen C, Pedersen J, Bogyo M, Klemba M: Biochemical characterization of Plasmodium falciparum dipeptidyl aminopeptidase 1. Mol Biochem Parasitol. 2011, 175 (1): 10-20. 10.1016/j.molbiopara.2010.08.004.
PubMed Central
CAS
PubMed
Google Scholar
Silmon de Monerri NC, Flynn HR, Campos MG, Hackett F, Koussis K, Withers-Martinez C, Skehel JM, Blackman MJ: Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect Immun. 2011, 79 (3): 1086-1097. 10.1128/IAI.00902-10.
PubMed Central
CAS
PubMed
Google Scholar
Moon SU, Kang JM, Kim TS, Kong Y, Sohn WM, Na BK: Plasmodium vivax: collaborative roles for plasmepsin 4 and vivapains in hemoglobin hydrolysis. Exp Parasitol. 2011, 128 (2): 127-132. 10.1016/j.exppara.2011.02.015.
CAS
PubMed
Google Scholar
Sologub L, Kuehn A, Kern S, Przyborski J, Schillig R, Pradel G: Malaria proteases mediate inside-out egress of gametocytes from red blood cells following parasite transmission to the mosquito. Cell Microbiol. 2011, 13 (6): 897-912. 10.1111/j.1462-5822.2011.01588.x.
CAS
PubMed
Google Scholar
Boddey JA, Hodder AN, Gunther S, Gilson PR, Patsiouras H, Kapp EA, Pearce JA, de Koning-Ward TF, Simpson RJ, Crabb BS, et al: An aspartyl protease directs malaria effector proteins to the host cell. Nature. 2010, 463 (7281): 627-631. 10.1038/nature08728.
PubMed Central
CAS
PubMed
Google Scholar
Bowyer PW, Simon GM, Cravatt BF, Bogyo M: Global profiling of proteolysis during rupture of Plasmodium falciparum from the host erythrocyte. Mol Cell Proteomics. 2010, 10 (5): M110 001636
Google Scholar
Pandey KC, Barkan DT, Sali A, Rosenthal PJ: Regulatory elements within the prodomain of Falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. PLoS One. 2009, 4 (5):
Subramanian S, Hardt M, Choe Y, Niles RK, Johansen EB, Legac J, Gut J, Kerr ID, Craik CS, Rosenthal PJ: Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases Falcipain-2 and Falcipain-3. PLoS One. 2009, 4 (4):
Spaccapelo R, Janse CJ, Caterbi S, Franke-Fayard B, Bonilla JA, Syphard LM, Di Cristina M, Dottorini T, Savarino A, Cassone A, et al: Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. Am J Pathol. 2010, 176 (1): 205-217. 10.2353/ajpath.2010.090504.
PubMed Central
CAS
PubMed
Google Scholar
Skinner-Adams TS, Stack CM, Trenholme KR, Brown CL, Grembecka J, Lowther J, Mucha A, Drag M, Kafarski P, McGowan S, et al: Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends Biochem Sci. 2010, 35 (1): 53-61. 10.1016/j.tibs.2009.08.004.
CAS
PubMed
Google Scholar
Russo I, Babbitt S, Muralidharan V, Butler T, Oksman A, Goldberg DE: Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte. Nature. 2010, 463 (7281): 632-636. 10.1038/nature08726.
PubMed Central
CAS
PubMed
Google Scholar
McGowan S, Oellig CA, Birru WA, Caradoc-Davies TT, Stack CM, Lowther J, Skinner-Adams T, Mucha A, Kafarski P, Grembecka J, et al: Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proc Natl Acad Sci USA. 2010, 107 (6): 2449-2454. 10.1073/pnas.0911813107.
PubMed Central
CAS
PubMed
Google Scholar
Na BK, Bae YA, Zo YG, Choe Y, Kim SH, Desai PV, Avery MA, Craik CS, Kim TS, Rosenthal PJ: Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4. PLoS Negl Trop Dis. 2010, 4 (10):
Li FW, Patra KP, Yowell CA, Dame JB, Chin K, Vinetz JM: Apical surface expression of aspartic protease Plasmepsin 4, a potential transmission-blocking target of the plasmodium ookinete. J Biol Chem. 2010, 285 (11): 8076-8083. 10.1074/jbc.M109.063388.
PubMed Central
CAS
PubMed
Google Scholar
Guruprasad L, Tanneeru K, Guruprasad K: Structural rationale for the recognition of arginine at P3 in PEXEL motif containing proteins of Plasmodium falciparum by plasmepsin V. Protein Pept Lett. 2011, 18 (6): 634-641.
CAS
PubMed
Google Scholar
Rawat M, Vijay S, Gupta Y, Dixit R, Tiwari PK, Sharma A: Sequence homology and structural analysis of plasmepsin 4 isolated from Indian Plasmodium vivax isolates. Infect Genet Evol. 2011, 11 (5): 924-933. 10.1016/j.meegid.2011.02.024.
CAS
PubMed
Google Scholar
de Farias Silva N, Lameira J, Alves CN: Computational analysis of aspartic protease plasmepsin II complexed with EH58 inhibitor: a QM/MM MD study. J Mol Model. 2011, 17: 2631-2638. 10.1007/s00894-011-0963-1.
PubMed
Google Scholar
Tastan Bishop O, Kroon M: Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors. J Mol Model. 2011
Google Scholar
Shah F, Mukherjee P, Gut J, Legac J, Rosenthal PJ, Tekwani BL, Avery MA: Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J Chem Inf Model. 2011, 51 (4): 852-864. 10.1021/ci200029y.
CAS
PubMed
Google Scholar
Ettari R, Bova F, Zappala M, Grasso S, Micale N: Falcipain-2 inhibitors. Med Res Rev. 2010, 30 (1): 136-167.
CAS
PubMed
Google Scholar
Bova F, Ettari R, Micale N, Carnovale C, Schirmeister T, Gelhaus C, Leippe M, Grasso S, Zappala M: Constrained peptidomimetics as antiplasmodial falcipain-2 inhibitors. Bioorg Med Chem. 2010, 18 (14): 4928-4938. 10.1016/j.bmc.2010.06.010.
CAS
PubMed
Google Scholar
Coteron JM, Catterick D, Castro J, Chaparro MJ, Diaz B, Fernandez E, Ferrer S, Gamo FJ, Gordo M, Gut J, et al: Falcipain inhibitors: optimization studies of the 2-pyrimidinecarbonitrile lead series. J Med Chem. 2010, 53 (16): 6129-6152. 10.1021/jm100556b.
CAS
PubMed
Google Scholar
Shah F, Mukherjee P, Desai P, Avery M: Computational approaches for the discovery of cysteine protease inhibitors against malaria and SARS. Curr Comput Aided Drug Des. 2010, 6 (1): 1-23. 10.2174/157340910790980142.
CAS
PubMed
Google Scholar
Gibbons P, Verissimo E, Araujo NC, Barton V, Nixon GL, Amewu RK, Chadwick J, Stocks PA, Biagini GA, Srivastava A, et al: Endoperoxide carbonyl falcipain 2/3 inhibitor hybrids: toward combination chemotherapy of malaria through a single chemical entity. J Med Chem. 2010, 53 (22): 8202-8206. 10.1021/jm1009567.
CAS
PubMed
Google Scholar
Ahmed W, Rani M, Khan IA, Iqbal A, Khan KM, Haleem MA, Azim MK: Characterisation of hydrazides and hydrazine derivatives as novel aspartic protease inhibitors. J Enzyme Inhib Med Chem. 2010, 25 (5): 673-678. 10.3109/14756360903508430.
CAS
PubMed
Google Scholar
Miura T, Hidaka K, Uemura T, Kashimoto K, Hori Y, Kawasaki Y, Ruben AJ, Freire E, Kimura T, Kiso Y: Improvement of both plasmepsin inhibitory activity and antimalarial activity by 2-aminoethylamino substitution. Bioorg Med Chem Lett. 2010, 20 (16): 4836-4839. 10.1016/j.bmcl.2010.06.099.
CAS
PubMed
Google Scholar
Gupta D, Yedidi RS, Varghese S, Kovari LC, Woster PM: Mechanism-based inhibitors of the aspartyl protease plasmepsin II as potential antimalarial agents. J Med Chem. 2010, 53 (10): 4234-4247. 10.1021/jm100233b.
CAS
PubMed
Google Scholar
Florent I, Marechal E, Gascuel O, Brehelin L: Bioinformatic strategies to provide functional clues to the unknown genes in Plasmodium falciparum genome. Parasite. 2010, 17 (4): 273-283.
CAS
PubMed
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4: P3-10.1186/gb-2003-4-5-p3.
PubMed
Google Scholar
Hershko A, Ciechanover A: The ubiquitin system. Annu Review Biochem. 1998, 67: 425-479. 10.1146/annurev.biochem.67.1.425.
CAS
Google Scholar
Wu YM, Wang XY, Liu X, Wang YF: Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res. 2003, 13 (4): 601-616. 10.1101/gr.913403.
PubMed Central
CAS
PubMed
Google Scholar
Kreidenweiss A, Kremsner PG, Mordmuller B: Comprehensive study of proteasome inhibitors against Plasmodium falciparum laboratory strains and field isolates from Gabon. Malar J. 2008, 7: --
PubMed Central
PubMed
Google Scholar
Ponts N, Yang JF, Chung DWD, Prudhomme J, Girke T, Horrocks P, Le Roch KG: Deciphering the ubiquitin-mediated pathway in apicomplexan parasites: a potential strategy to interfere with parasite virulence. PLoS One. 2008, 3: e2386-10.1371/journal.pone.0002386.
PubMed Central
PubMed
Google Scholar
Stemmann O, Lechner J: The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution. EMBO J. 1996, 15 (14): 3611-3620.
PubMed Central
CAS
PubMed
Google Scholar
Takemaru K, Li FQ, Ueda H, Hirose S: Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein. Proc Natl Acad Sci USA. 1997, 94 (14): 7251-7256. 10.1073/pnas.94.14.7251.
PubMed Central
CAS
PubMed
Google Scholar
Ullrich O, Stenmark H, Alexandrov K, Huber LA, Kaibuchi K, Sasaki T, Takai Y, Zerial M: Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J Biol Chem. 1993, 268 (24): 18143-18150.
CAS
PubMed
Google Scholar
Huibregtse JM, Scheffner M, Beaudenon S, Howley PM: A family of proteins structurally and functionally related to the E6-AP ubiquitin protein ligase. Proc Natl Acad Sci USA. 1995, 92 (7): 2563-2567. 10.1073/pnas.92.7.2563.
PubMed Central
CAS
PubMed
Google Scholar
Shock JL, Fischer KF, DeRisi JL: Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle. Genome Biol. 2007, 8 (7):
Sims JS, Militello KT, Sims PA, Patel VP, Kasper JM, Wirth DF: Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. Eukaryot Cell. 2009, 8 (3): 327-338. 10.1128/EC.00340-08.
PubMed Central
CAS
PubMed
Google Scholar
Adams JH, Hudson DE, Torii M, Ward GE, Wellems TE, Aikawa M, Miller LH: The Duffy receptor family of Plasmodium knowlesi is mocated within the micronemes of invasive malaria merozoites. Cell. 1990, 63 (1): 141-153. 10.1016/0092-8674(90)90295-P.
CAS
PubMed
Google Scholar
McColl DJ, Silva A, Foley M, Kun JFJ, Favaloro JM, Thompson JK, Marshall VM, Coppel RL, Kemp DJ, Anders RF: Molecular variation in a novel polymorphic antigen associated with Plasmodium falciparum merozoites. Mol Biochem Parasit. 1994, 68 (1): 53-67. 10.1016/0166-6851(94)00149-9.
CAS
Google Scholar
Chung DW, Le Roch KG: Targeting the Plasmodium ubiquitin/proteasome system with anti-malarial compounds: promises for the future. Infect Disord Drug Targets. 2010, 10 (3): 158-164.
CAS
PubMed
Google Scholar
Gantt SM, Myung JM, Briones MRS, Li WD, Corey EJ, Omura S, Nussenzweig V, Sinnis P: Proteasome inhibitors block development of Plasmodium spp. Antimicrob Agents Ch. 1998, 42 (10): 2731-2738.
CAS
Google Scholar
Acharya P, Kumar R, Tatu U: Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum. Mol Biochem Parasit. 2007, 153 (2): 85-94. 10.1016/j.molbiopara.2007.01.009.
CAS
Google Scholar
Botha M, Pesce ER, Blatch GL: The Hsp40 proteins of Plasmodium falciparum and other apicomplexa: regulating chaperone power in the parasite and the host. Int J Biochem Cell Biol. 2007, 39 (10): 1781-1803. 10.1016/j.biocel.2007.02.011.
CAS
PubMed
Google Scholar
Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K: The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem. 2000, 275 (51): 40180-40186. 10.1074/jbc.M007633200.
CAS
PubMed
Google Scholar
Tschan S, Kreidenweiss A, Stierhof YD, Sessler N, Fendel R, Mordmuller B: Mitochondrial localization of the threonine peptidase PfHslV, a ClpQ ortholog in Plasmodium falciparum. Int J Parasitol. 2010, 40 (13): 1517-1523. 10.1016/j.ijpara.2010.05.006.
CAS
PubMed
Google Scholar
Powers JC, Asgian JL, Ekici OD, James KE: Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev. 2002, 102 (12): 4639-4750. 10.1021/cr010182v.
CAS
PubMed
Google Scholar
Ramasamy G, Gupta D, Mohmmed A, Chauhan VS: Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease. Mol Biochem Parasitol. 2007, 152 (2): 139-148. 10.1016/j.molbiopara.2007.01.002.
CAS
PubMed
Google Scholar
El Bakkouri M, Pow A, Mulichak A, Cheung KL, Artz JD, Amani M, Fell S, de Koning-Ward TF, Goodman CD, McFadden GI: The Clp chaperones and proteases of the human malaria parasite Plasmodium falciparum. J Mol Biol. 404 (3): 456-477.
Rathore S, Sinha D, Asad M, Bottcher T, Afrin F, Chauhan VS, Gupta D, Sieber SA, Mohmmed A: A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol. 2010, 77 (4): 873-890.
CAS
PubMed
Google Scholar
Brown MS, Ye J, Rawson RB, Goldstein JL: Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000, 100 (4): 391-398. 10.1016/S0092-8674(00)80675-3.
CAS
PubMed
Google Scholar
Lichtenthaler SF, Haass C, Steiner H: Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem. 2011, 117 (5): 779-796. 10.1111/j.1471-4159.2011.07248.x.
CAS
PubMed
Google Scholar
Urban S: Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat Rev Microbiol. 2009, 7 (6): 411-423.
PubMed Central
CAS
PubMed
Google Scholar
Kinch LN, Ginalski K, Grishin NV: Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade. Protein Sci. 2006, 15 (1): 84-93. 10.1110/ps.051766506.
PubMed Central
CAS
PubMed
Google Scholar
Baker RP, Wijetilaka R, Urban S: Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog. 2006, 2 (10): e113-10.1371/journal.ppat.0020113.
PubMed Central
PubMed
Google Scholar
Brossier F, Jewett TJ, Sibley LD, Urban S: A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci USA. 2005, 102 (11): 4146-4151. 10.1073/pnas.0407918102.
PubMed Central
CAS
PubMed
Google Scholar
Dowse TJ, Pascall JC, Brown KD, Soldati D: Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol. 2005, 35 (7): 747-756. 10.1016/j.ijpara.2005.04.001.
CAS
PubMed
Google Scholar
O'Donnell RA, Hackett F, Howell SA, Treeck M, Struck N, Krnajski Z, Withers-Martinez C, Gilberger TW, Blackman MJ: Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol. 2006, 174 (7): 1023-1033. 10.1083/jcb.200604136.
PubMed Central
PubMed
Google Scholar
Li X, Chen H, Bahamontes-Rosa N, Kun JF, Traore B, Crompton PD, Chishti AH: Plasmodium falciparum signal peptide peptidase is a promising drug target against blood stage malaria. Biochem Biophys Res Commun. 2009, 380 (3): 454-459. 10.1016/j.bbrc.2009.01.083.
PubMed Central
CAS
PubMed
Google Scholar
Li X, Chen H, Oh SS, Chishti AH: A Presenilin-like protease associated with Plasmodium falciparum micronemes is involved in erythrocyte invasion. Mol Biochem Parasitol. 2008, 158 (1): 22-31. 10.1016/j.molbiopara.2007.11.007.
PubMed Central
CAS
PubMed
Google Scholar
Townsley FM, Wilson DW, Pelham HR: Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport. EMBO J. 1993, 12 (7): 2821-2829.
PubMed Central
CAS
PubMed
Google Scholar
Dowse TJ, Soldati D: Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Trends Parasitol. 2005, 21 (6): 254-258. 10.1016/j.pt.2005.04.009.
CAS
PubMed
Google Scholar
Singh S, Plassmeyer M, Gaur D, Miller LH: Mononeme: a new secretory organelle in Plasmodium falciparum merozoites identified by localization of rhomboid-1 protease. Proc Natl Acad Sci USA. 2007, 104 (50): 20043-20048. 10.1073/pnas.0709999104.
PubMed Central
CAS
PubMed
Google Scholar
Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, Cowman AF: Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000, 38 (4): 706-718. 10.1046/j.1365-2958.2000.02175.x.
CAS
PubMed
Google Scholar
Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK: Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science. 1975, 189 (4202): 561-563. 10.1126/science.1145213.
CAS
PubMed
Google Scholar
Kalanon M, Tonkin CJ, McFadden GI: Characterization of two putative protein translocation components in the apicoplast of Plasmodium falciparum. Eukaryot Cell. 2009, 8 (8): 1146-1154. 10.1128/EC.00061-09.
PubMed Central
CAS
PubMed
Google Scholar
Knop M, Finger A, Braun T, Hellmuth K, Wolf DH: Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 1996, 15 (4): 753-763.
PubMed Central
CAS
PubMed
Google Scholar
Spork S, Hiss JA, Mandel K, Sommer M, Kooij TW, Chu T, Schneider G, Maier UG, Przyborski JM: An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot Cell. 2009, 8 (8): 1134-1145. 10.1128/EC.00083-09.
PubMed Central
CAS
PubMed
Google Scholar
van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B: Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci USA. 2008, 105 (36): 13574-13579. 10.1073/pnas.0803862105.
PubMed Central
CAS
PubMed
Google Scholar
Arastu-Kapur S, Ponder EL, Fonovic UP, Yeoh S, Yuan F, Fonovic M, Grainger M, Phillips CI, Powers JC, Bogyo M: Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol. 2008, 4 (3): 203-213. 10.1038/nchembio.70.
CAS
PubMed
Google Scholar
Yeoh S, O'Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F, Withers-Martinez C, Mitchell GH, Bannister LH, et al: Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell. 2007, 131 (6): 1072-1083. 10.1016/j.cell.2007.10.049.
CAS
PubMed
Google Scholar
McCoubrie JE, Miller SK, Sargeant T, Good RT, Hodder AN, Speed TP, de Koning-Ward TF, Crabb BS: Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun. 2007, 75 (12): 5565-5574. 10.1128/IAI.00405-07.
PubMed Central
CAS
PubMed
Google Scholar
Sharma S, Pradhan A, Chauhan VS, Tuteja R: Isolation and characterization of type I signal peptidase of different malaria parasites. J Biomed Biotechnol. 2005, 2005 (4): 301-309. 10.1155/JBB.2005.301.
PubMed Central
PubMed
Google Scholar
Tuteja R, Pradhan A, Sharma S: Plasmodium falciparum signal peptidase is regulated by phosphorylation and required for intra-erythrocytic growth. Mol Biochem Parasitol. 2008, 157 (2): 137-147. 10.1016/j.molbiopara.2007.10.007.
CAS
PubMed
Google Scholar
Russo I, Oksman A, Vaupel B, Goldberg DE: A calpain unique to alveolates is essential in Plasmodium falciparum and its knockdown reveals an involvement in pre-S-phase development. Proc Natl Acad Sci USA. 2009, 106 (5): 1554-1559. 10.1073/pnas.0806926106.
PubMed Central
CAS
PubMed
Google Scholar
Le Chat L, Sinden RE, Dessens JT: The role of metacaspase 1 in Plasmodium berghei development and apoptosis. Mol Biochem Parasitol. 2007, 153 (1): 41-47. 10.1016/j.molbiopara.2007.01.016.
PubMed Central
CAS
PubMed
Google Scholar
Rawlings ND: A large and accurate collection of peptidase cleavages in the MEROPS database. Database (Oxford). 2009, 2009: bap015-
Google Scholar
von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005, D433-437. 33 Database
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2010, 27 (3): 431-432.
PubMed Central
PubMed
Google Scholar
Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M: Computing topological parameters of biological networks. Bioinformatics. 2008, 24 (2): 282-284. 10.1093/bioinformatics/btm554.
CAS
PubMed
Google Scholar
Rhrissorrakrai K, Gunsalus KC: MINE: Module Identification in Networks. BMC Bioinformatics. 2011, 12: 192-10.1186/1471-2105-12-192.
PubMed Central
PubMed
Google Scholar
Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003, 4: 2-10.1186/1471-2105-4-2.
PubMed Central
PubMed
Google Scholar
Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005, 21 (16): 3448-3449. 10.1093/bioinformatics/bti551.
CAS
PubMed
Google Scholar
Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS: PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009, D539-543. 37 Database
Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, et al: InterPro: the integrative protein signature database. Nucleic Acids Res. 2009, 37: D211-D215. 10.1093/nar/gkn785.
PubMed Central
CAS
PubMed
Google Scholar
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ: Multiple sequence alignment with Clustal x. Trends Biochem Sci. 1998, 23 (10): 403-405. 10.1016/S0968-0004(98)01285-7.
CAS
PubMed
Google Scholar
Notredame C, Higgins DG, Heringa J: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000, 302 (1): 205-217. 10.1006/jmbi.2000.4042.
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011
Google Scholar
Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, Powell S, von Mering C, Doerks T, Jensen LJ: eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Res. 2010, D190-195. 38 Database
Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science. 1997, 278 (5338): 631-637. 10.1126/science.278.5338.631.
CAS
PubMed
Google Scholar