Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG: Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res. 2009, 19 (12): 2258-2270. 10.1101/gr.091777.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kollaras A, Kavanagh JM, Bell GL, Purkovic D, Mandarakas S, Arcenal P, Ng WS, Routledge KS, Selwood DH, Koutouridis P, Paras FE, Milic P, Tirado-Escobar ES, Moore MJ, Bell PJ, Attfield PV: Techno-economic implications of improved high gravity corn mash fermentation. Bioresour Technol. 2011, 102 (16): 7521-7525. 10.1016/j.biortech.2011.04.094.
Article
CAS
PubMed
Google Scholar
Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH: Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol. 2010, 102 (3): 3020-3027.
Article
PubMed
Google Scholar
Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R: High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?. Appl Microbiol Biotechnol. 2010, 85 (4): 861-867. 10.1007/s00253-009-2248-5.
Article
CAS
PubMed
Google Scholar
Almeida JRM, Runquist D, Nogue VSI, Liden G, Gorwa-Grauslund MF: Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J. 2011, 6 (3): 286-299. 10.1002/biot.201000301.
Article
CAS
PubMed
Google Scholar
Nakamura T, Watanabe T, Srichuwong S, Arakane M, Tamiya S, Yoshinaga M, Watanabe I, Yamamoto M, Ando A, Tokuyasu K: Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresour Technol. 2010, 101 (24): 9710-9714. 10.1016/j.biortech.2010.07.079.
Article
PubMed
Google Scholar
Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6000 genes. Science. 1996, 274 (5287): 546-567. 10.1126/science.274.5287.546.
Article
CAS
PubMed
Google Scholar
Kvitek DJ, Will JL, Gasch AP: Variations in stress sensitivity and genomic expression in diverseS. cerevisiaeisolates. PLoS Genet. 2008, 4 (10): e1000223-10.1371/journal.pgen.1000223.
Article
PubMed Central
PubMed
Google Scholar
Ma MG, Liu ZL: Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics. 2010, 11: 660-10.1186/1471-2164-11-660.
Article
PubMed Central
CAS
PubMed
Google Scholar
Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA: Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001, 12 (2): 323-337.
Article
PubMed Central
CAS
PubMed
Google Scholar
Capaldi AP, Kaplan T, Liu Y, Habib N, Regev A, Friedman N, O'Shea EK: Structure and function of a transcriptional network activated by the MAPK Hog1. Nat Genet. 2008, 40 (11): 1300-1306. 10.1038/ng.235.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000, 11 (12): 4241-4257.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hahn JS, Hu ZZ, Thiele DJ, Iyer VR: Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol. 2004, 24 (12): 5249-5256. 10.1128/MCB.24.12.5249-5256.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S: Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet. 2009, 50 (3): 301-310. 10.1007/BF03195688.
Article
CAS
PubMed
Google Scholar
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, et al, et al: Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002, 41 (6896): 387-391.
Article
Google Scholar
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature. 2004, 431 (7004): 99-104. 10.1038/nature02800.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O'Kelly MJT, van Oudenaarden A, Barton DBH, Bailes E, Ba ANN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ: Population genomics of domestic and wild yeasts. Nature. 2009, 458 (7236): 337-341. 10.1038/nature07743.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, Bernstein DA, Rolfe PA, Heisler LE, Chin B, Nislow C, Giaever G, Phillips PC, Fink GR, Gifford DK, Boone C: Genotype to phenotype: a complex problem. Science. 2010, 328 (5977): 469-469. 10.1126/science.1189015.
Article
PubMed Central
CAS
PubMed
Google Scholar
Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, et al: Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res. 2011, 18 (6): 423-434. 10.1093/dnares/dsr029.
Article
PubMed Central
CAS
PubMed
Google Scholar
Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ: Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet. 2011, 7 (2): e1001287-10.1371/journal.pgen.1001287.
Article
PubMed Central
CAS
PubMed
Google Scholar
Borneman AR, Forgan AH, Pretorius IS, Chambers PJ: Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Res. 2008, 8 (7): 1185-1195. 10.1111/j.1567-1364.2008.00434.x.
Article
CAS
PubMed
Google Scholar
Gancedo C, Flores CL: The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 2004, 4 (4–5): 351-359.
Article
CAS
PubMed
Google Scholar
Ikner A, Shiozaki K: Yeast signaling pathways in the oxidative stress response. Mutat Res. 2005, 569 (1–2): 13-27.
Article
CAS
PubMed
Google Scholar
Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Liden G: A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006, 23 (6): 455-464. 10.1002/yea.1370.
Article
CAS
PubMed
Google Scholar
Liu ZL: Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011, 90 (3): 809-825. 10.1007/s00253-011-3167-9.
Article
CAS
PubMed
Google Scholar
Dunn B, Richter C, Kvitek DJ, Pugh T, Sherlock G: Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Res. 2012, 22 (5): 908-924. 10.1101/gr.130310.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wehner EP, Rao E, Brendel M: Molecular-structure and genetic-regulation of Sfa, a gene responsible for resistance to formaldehyde in Saccharomyces-cerevisiae, and characterization of its protein product. Mol Gen Genet. 1993, 237 (3): 351-358.
CAS
PubMed
Google Scholar
Gaisne M, Bécam AM, Verdiere J, Herbert CJ: A 'natural' mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1). Curr Genet. 1999, 36 (4): 195-200. 10.1007/s002940050490.
Article
CAS
PubMed
Google Scholar
Peña MMO, Puig S, Thiele DJ: Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem. 2000, 275 (43): 33244-33251. 10.1074/jbc.M005392200.
Article
PubMed
Google Scholar
Knight SA, Labbe S, Kwon LF, Kosman DJ, Thiele DJ: A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev. 1996, 10 (15): 1917-1929. 10.1101/gad.10.15.1917.
Article
CAS
PubMed
Google Scholar
Chan JE, Kolodner RD: A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet. 2011, 7 (5): e1002089-10.1371/journal.pgen.1002089.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Gu Z, Bruno D, Miranda M, Nguyen M, Wilhelmy J, Komp C, Tamse R, Wang X, Jia P, Luedi P, Oefner PJ, David L, Dietrich FS, Li Y, Davis RW, Steinmetz LM: Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci USA. 2007, 104 (31): 12825-12830. 10.1073/pnas.0701291104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eastmond DL, Nelson HCM: Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem. 2006, 281 (43): 32909-32921. 10.1074/jbc.M602454200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mieczkowski PA, Lemoine FJ, Petes TD: Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair. 2006, 5 (9–10): 1010-1020.
Article
CAS
PubMed
Google Scholar
Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras JL, Wincker P, Casaregola S, Dequin S: Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc Natl Acad Sci USA. 2009, 106 (38): 16333-16338. 10.1073/pnas.0904673106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, Yang SP, Fay JC: A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet. 2008, 4 (8): e1000183-10.1371/journal.pgen.1000183.
Article
PubMed Central
PubMed
Google Scholar
Emerson JJ, Hsieh LC, Sung HM, Wang TY, Huang CJ, Lu HH, Lu MY, Wu SH, Li WH: Natural selection on cis and trans regulation in yeasts. Genome Res. 2010, 20 (6): 826-836. 10.1101/gr.101576.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L: Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet. 2003, 35 (1): 57-64.
Article
CAS
PubMed
Google Scholar
Brem RB, Yvert G, Clinton R, Kruglyak L: Genetic dissection of transcriptional regulation in budding yeast. Science. 2002, 296 (5568): 752-755. 10.1126/science.1069516.
Article
CAS
PubMed
Google Scholar
Hama S, Yamaji H, Kaieda M, Oda M, Kondo A, Fukuda H: Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem Eng J. 2004, 21 (2): 155-160. 10.1016/j.bej.2004.05.009.
Article
CAS
Google Scholar
Tao XL, Zheng DQ, Liu TZWPM, Zhao WP, Zhu MY, Jiang XH, Zhao YH, C WX: A Novel Strategy to Construct Yeast Saccharomyces cerevisiae Strains for Very High Gravity Fermentation. PLoS One. 2012, 7 (2): e31235-doi:31210.31371/journal.pone.0031235.
Article
PubMed Central
CAS
PubMed
Google Scholar
Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA: Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci USA. 2008, 105 (33): 11845-11850. 10.1073/pnas.0804529105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kent WJ: BLAT - The BLAST-like alignment tool. Genome Res. 2002, 12 (4): 656-664.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007, 23 (6): 673-679. 10.1093/bioinformatics/btm009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis comparison tool. Bioinformatics. 2005, 21 (16): 3422-3423. 10.1093/bioinformatics/bti553.
Article
CAS
PubMed
Google Scholar
Wang B, Guo GW, Wang C, Lin Y, Wang XN, Zhao MM, Guo Y, He MH, Zhang Y, Pan L: Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res. 2010, 38 (15): 5075-5087. 10.1093/nar/gkq256.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009, 25 (15): 1966-1967. 10.1093/bioinformatics/btp336.
Article
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5 (7): 621-628. 10.1038/nmeth.1226.
Article
CAS
PubMed
Google Scholar
Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res. 1997, 7 (10): 986-995.
CAS
PubMed
Google Scholar
Zheng DQ, Wu XC, Wang PM, Chi XQ, Tao XL, Li P, Jiang XH, Zhao YH: Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biot. 2011, 38 (3): 415-422. 10.1007/s10295-010-0784-8.
Article
CAS
Google Scholar