van der Zee A, Groenendijk H, Peeters M, Mooi FR: The differentiation of Bordetella parapertussis and Bordetella bronchiseptica from humans and animals as determined by DNA polymorphism mediated by two different insertion sequence elements suggests their phylogenetic relationship. Int J Syst Bacteriol. 1996, 46: 640-647. 10.1099/00207713-46-3-640.
Article
CAS
PubMed
Google Scholar
Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, Cerdeño-Tárraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica. Nat Genet. 2003, 35: 32-40. 10.1038/ng1227.
Article
PubMed
Google Scholar
Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE, Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA, Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM: Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol. 2006, 188: 6002-6015. 10.1128/JB.01927-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR: Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 2005, 1: e45-10.1371/journal.ppat.0010045.
Article
PubMed Central
PubMed
Google Scholar
Cummings CA, Brinig MM, Lepp PW, van de Pas S, Relman DA: Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol. 2004, 186: 1484-1492. 10.1128/JB.186.5.1484-1492.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Diavatopoulos DA, Cummings CA, van der Heide HGJ, van Gent M, Liew S, Relman DA, Mooi FR: Characterization of a Highly Conserved Island in the Otherwise Divergent Bordetella holmesii and Bordetella pertussis Genomes. J Bacteriol. 2006, 188: 8385-8394. 10.1128/JB.01081-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buboltz AM, Nicholson TL, Karanikas AT, Preston A, Harvill ET: Evidence for Horizontal Gene Transfer of Two Antigenically Distinct O Antigens in Bordetella bronchiseptica. Infect Immun. 2009, 77: 3249-3257. 10.1128/IAI.01448-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
The bacterial pan-genome: a new paradigm in microbiology: http://revistes.iec.cat/index.php/IM/article/view/11019.
Gross R, Guzman CA, Sebaihia M, dos Santos VAPM, Pieper DH, Koebnik R, Lechner M, Bartels D, Buhrmester J, Choudhuri JV, Ebensen T, Gaigalat L, Herrmann S, Khachane AN, Larisch C, Link S, Linke B, Meyer F, Mormann S, Nakunst D, Rückert C, Schneiker-Bekel S, Schulze K, Vorhölter F-J, Yevsa T, Engle JT, Goldman WE, Pühler A, Göbel UB, Goesmann A, Blöcker H, Kaiser O, Martinez-Arias R: The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics. 2008, 9: 449-10.1186/1471-2164-9-449.
Article
PubMed Central
PubMed
Google Scholar
Bart MJ, van Gent M, van der Heide HG, Boekhorst J, Hermans P, Parkhill J, Mooi FR: Comparative genomics of prevaccination and modern Bordetella pertussis strains. BMC Genomics. 2010, 11: 627-10.1186/1471-2164-11-627.
Article
PubMed Central
PubMed
Google Scholar
Zhang S, Xu Y, Zhou Z, Wang S, Yang R, Wang J, Wang L: Complete Genome Sequence of Bordetella Pertussis CS, a Chinese Pertussis Vaccine Strain. J Bacteriol. 2011, 193: 4017-4018. 10.1128/JB.05184-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buboltz AM, Nicholson TL, Weyrich LS, Harvill ET: Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica. Infect Immun. 2009, 77: 3969-3977. 10.1128/IAI.01362-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buboltz AM, Nicholson TL, Parette MR, Hester SE, Parkhill J, Harvill ET: Replacement of adenylate cyclase toxin in a lineage of Bordetella bronchiseptica. J Bacteriol. 2008, 190: 5502-5511. 10.1128/JB.00226-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sebo P, Glaser P, Sakamoto H, Ullmann A: High-level synthesis of active adenylate cyclase toxin of Bordetella pertussis in a reconstructed Escherichia coli system. Gene. 1991, 104: 19-24. 10.1016/0378-1119(91)90459-O.
Article
CAS
PubMed
Google Scholar
Brinig MM, Register KB, Ackermann MR, Relman DA: Genomic features of Bordetella parapertussis clades with distinct host species specificity. Genome Biol. 2006, 7: R81-10.1186/gb-2006-7-9-r81.
Article
PubMed Central
PubMed
Google Scholar
Mardis ER: Next-Generation DNA Sequencing Methods. Annu. Rev. Genom. Human Genet. 2008, 9: 387-402. 10.1146/annurev.genom.9.081307.164359.
Article
CAS
Google Scholar
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM: Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005, 437: 376-380.
PubMed Central
CAS
PubMed
Google Scholar
Jarvie T, Harkins T: De novo assembly and genomic structural variation analysis with genome sequencer FLX 3K long-tag paired end reads. Biotechniques. 2008, 44: 829-831. 10.2144/000112894.
Article
CAS
PubMed
Google Scholar
Latreille P, Norton S, Goldman BS, Henkhaus J, Miller N, Barbazuk B, Bode HB, Darby C, Du Z, Forst S, Gaudriault S, Goodner B, Goodrich-Blair H, Slater S: Optical mapping as a routine tool for bacterial genome sequence finishing. BMC Genomics. 2007, 8: 321-10.1186/1471-2164-8-321.
Article
PubMed Central
PubMed
Google Scholar
Applied Biosystems: 3730/3730xl DNA Analyzers User Guide. 2007
Google Scholar
Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19: 1639-1645. 10.1101/gr.092759.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003, 13: 2178-2189. 10.1101/gr.1224503.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen F, Mackey AJ, Stoeckert CJ, Roos DS: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006, 34: D363-D368. 10.1093/nar/gkj123.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bentley S: Sequencing the species pan-genome. Nat Rev Micro. 2009, 7: 258-259. 10.1038/nrmicro2123.
Article
CAS
Google Scholar
Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MTG, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeno-Tarraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PCF, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG: Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001, 413: 523-527. 10.1038/35097083.
Article
CAS
PubMed
Google Scholar
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Margarit y Ros I, et al, et al: Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome. Proc Natl Acad Sci USA. 2005, 102: 13950-13955. 10.1073/pnas.0506758102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tettelin H: SYBIL:STREPNEUMO:PANGENOME. 2008
Google Scholar
Tettelin H, Riley D, Cattuto C, Medini D: Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008, 11: 472-477. 10.1016/j.mib.2008.09.006.
Article
CAS
PubMed
Google Scholar
Smith AM, Guzmán CA, Walker MJ: The virulence factors of Bordetella pertussis: a matter of control. FEMS Microbiol Rev. 2001, 25: 309-333. 10.1111/j.1574-6976.2001.tb00580.x.
Article
CAS
PubMed
Google Scholar
Preston A, Maskell D: The molecular genetics and role in infection of lipopolysaccharide biosynthesis in the Bordetellae. J Endotoxin Res. 2001, 7: 251-261.
CAS
PubMed
Google Scholar
Stockbauer KE, Foreman-Wykert AK, Miller JF: Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 2003, 5: 123-132. 10.1046/j.1462-5822.2003.00260.x.
Article
CAS
PubMed
Google Scholar
Weyrich LS, Rolin OY, Muse SJ, Park J, Spidale N, Kennett MJ, Hester SE, Chen C, Dudley EG, Harvill ET: A Type VI Secretion System Encoding Locus Is Required for Bordetella bronchiseptica Immunomodulation and Persistence In Vivo. PLoS ONE. 2012, 7: e45892-10.1371/journal.pone.0045892.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yuk MH, Harvill ET, Miller JF: The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol. 1998, 28: 945-959. 10.1046/j.1365-2958.1998.00850.x.
Article
CAS
PubMed
Google Scholar
Baumler AJ, Tsolis RM, Ficht TA, Adams LG: Evolution of Host Adaptation in Salmonella enterica. Infect Immun. 1998, 66: 4579-4587.
PubMed Central
CAS
PubMed
Google Scholar
Philippe H, Douady CJ: Horizontal gene transfer and phylogenetics. Curr Opin Microbiol. 2003, 6: 498-505. 10.1016/j.mib.2003.09.008.
Article
CAS
PubMed
Google Scholar
Ovcharenko I, Loots GG, Hardison RC, Miller W, Stubbs L: zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res. 2004, 14: 472-477. 10.1101/gr.2129504.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mooi FR, van Oirschot H, Heuvelman K, van der Heide HGJ, Gaastra W, Willems RJL: Polymorphism in the Bordetella pertussis Virulence Factors P.69/Pertactin and Pertussis Toxin in The Netherlands: Temporal Trends and Evidence for Vaccine-Driven Evolution. Infect Immun. 1998, 66: 670-675.
PubMed Central
CAS
PubMed
Google Scholar
Octavia S, Maharjan RP, Sintchenko V, Stevenson G, Reeves PR, Gilbert GL, Lan R: Insight into Evolution of Bordetella pertussis from Comparative Genomic Analysis: Evidence of Vaccine-Driven Selection. Mol Biol Evol. 2011, 28: 707-715. 10.1093/molbev/msq245.
Article
CAS
PubMed
Google Scholar
Schubert S, Darlu P, Clermont O, Wieser A, Magistro G, Hoffmann C, Weinert K, Tenaillon O, Matic I, Denamur E: Role of Intraspecies Recombination in the Spread of Pathogenicity Islands within the Escherichia coli Species. PLoS Pathog. 2009, 5: e1000257-10.1371/journal.ppat.1000257.
Article
PubMed Central
PubMed
Google Scholar
Gerlach G, von Wintzingerode F, Middendorf B, Gross R: Evolutionary trends in the genus Bordetella. Microbes Infect. 2001, 3: 61-72. 10.1016/S1286-4579(00)01353-8.
Article
CAS
PubMed
Google Scholar
Vernikos GS, Parkhill J: Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics. 2006, 22: 2196-2203. 10.1093/bioinformatics/btl369.
Article
CAS
PubMed
Google Scholar
Wildschutte H, Preheim SP, Hernandez Y, Polz MF: O‐antigen diversity and lateral transfer of the wbe region among Vibrio splendidus isolates. Environ Microbiol. 2010, 12: 2977-2987. 10.1111/j.1462-2920.2010.02274.x.
Article
CAS
PubMed
Google Scholar
Iguchi A, Ooka T, Ogura Y, Nakayama K, Frankel G, Hayashi T, Asadulghani: Genomic comparison of the O-antigen biosynthesis gene clusters of Escherichia coli O55 strains belonging to three distinct lineages. Microbiology. 2008, 154: 559-570. 10.1099/mic.0.2007/013334-0.
Article
CAS
PubMed
Google Scholar
Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-genome. Curr Opin Genet Dev. 2005, 15: 589-594. 10.1016/j.gde.2005.09.006.
Article
CAS
PubMed
Google Scholar
Joseph SJ, Didelot X, Gandhi K, Dean D, Read TD: Interplay of recombination and selection in the genomes of Chlamydia trachomatis. Biol Direct. 2011, 6: 28-10.1186/1745-6150-6-28.
Article
PubMed Central
PubMed
Google Scholar
Snipen L, Almøy T, Ussery DW: Microbial comparative pan-genomics using binomial mixture models. BMC Genomics. 2009, 10: 385-10.1186/1471-2164-10-385.
Article
PubMed Central
PubMed
Google Scholar
Lefébure T, Stanhope MJ: Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 2007, 8: R71-10.1186/gb-2007-8-5-r71.
Article
PubMed Central
PubMed
Google Scholar
Hausman SZ, Cherry JD, Heininger U, von König CHW, Burns DL: Analysis of proteins encoded by the ptx and ptl genes of Bordetella bronchiseptica and Bordetella parapertussis. Infect Immun. 1996, 64: 4020-4026.
PubMed Central
CAS
PubMed
Google Scholar
Ribeiro-Neto FA, Rodbell M: Pertussis toxin induces structural changes in G alpha proteins independently of ADP-ribosylation. Proc Natl Acad Sci USA. 1989, 86: 2577-2581. 10.1073/pnas.86.8.2577.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saukkonen K, Burnette WN, Mar VL, Masure HR, Tuomanen EI: Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc Natl Acad Sci USA. 1992, 89: 118-122. 10.1073/pnas.89.1.118.
Article
PubMed Central
CAS
PubMed
Google Scholar
Witvliet MH, Burns DL, Brennan MJ, Poolman JT, Manclark CR: Binding of pertussis toxin to eucaryotic cells and glycoproteins. Infect Immun. 1989, 57: 3324-3330.
PubMed Central
CAS
PubMed
Google Scholar
Schneider OD, Weiss AA, Miller WE: Pertussis Toxin Signals Through the TCR to Initiate Cross-Desensitization of the Chemokine Receptor CXCR4. J Immunol. 2009, 182: 5730-5739. 10.4049/jimmunol.0803114.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bjørnstad ON, Harvill ET: Evolution and emergence of Bordetella in humans. Trends Microbiol. 2005, 13: 355-359. 10.1016/j.tim.2005.06.007.
Article
PubMed
Google Scholar
Chain PSG, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C, Cole JR, Ding Y, Dugan S, Field D, Garrity GM, Gibbs R, Graves T, Han CS, Harrison SH, Highlander S, Hugenholtz P, Khouri HM, Kodira CD, Kolker E, Kyrpides NC, Lang D, Lapidus A, Malfatti SA, Markowitz V, Metha T: Genomics. Genome project standards in a new era of sequencing. Science. 2009, 326: 236-237. 10.1126/science.1180614.
Article
CAS
PubMed
Google Scholar
Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18: 821-829. 10.1101/gr.074492.107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roche Applied Science: Genome Sequencer FLX Data Analysis Software Manual. 2007
Google Scholar
Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8: 186-194.
Article
CAS
PubMed
Google Scholar
Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998, 8: 175-185.
Article
CAS
PubMed
Google Scholar
Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res. 1998, 8: 195-202.
Article
CAS
PubMed
Google Scholar
Qi J, Zhao F, Buboltz A, Schuster SC: inGAP: an integrated next-generation genome analysis pipeline. Bioinformatics. 2010, 26: 127-129. 10.1093/bioinformatics/btp615.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008, 9: 75-10.1186/1471-2164-9-75.
Article
PubMed Central
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar
Pearson WR, Lipman DJ: Improved tools for biological sequence comparison. Proc Natl Acad Sci USA. 1988, 85: 2444-2448. 10.1073/pnas.85.8.2444.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins. 1997, 28: 405-420. 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L.
Article
CAS
PubMed
Google Scholar
de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N: ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34: W362-W365. 10.1093/nar/gkl124.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001, 305: 567-580. 10.1006/jmbi.2000.4315.
Article
CAS
PubMed
Google Scholar
Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004, 340: 783-795. 10.1016/j.jmb.2004.05.028.
Article
PubMed
Google Scholar
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M: ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34: D32-D36. 10.1093/nar/gkj014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics. 2000, 16: 944-945. 10.1093/bioinformatics/16.10.944.
Article
CAS
PubMed
Google Scholar
Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. Bioinformatics. 2005, 21: 3422-3423. 10.1093/bioinformatics/bti553.
Article
CAS
PubMed
Google Scholar
R Development Core Team: R: R Foundation for Statistical Cmputing. A language and environment for statistical computing. 2008, Vienna, Austria
Google Scholar
Lukjancenko O, Wassenaar TM, Ussery DW: Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol. 2010, 60: 708-720. 10.1007/s00248-010-9717-3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ning Z, Cox AJ, Mullikin JC: SSAHA: a fast search method for large DNA databases. Genome Res. 2001, 11: 1725-1729. 10.1101/gr.194201.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22: 2688-2690. 10.1093/bioinformatics/btl446.
Article
CAS
PubMed
Google Scholar
Harris SR, Feil EJ, Holden MTG, Quail MA, Nickerson EK, Chantratita N, Gardete S, Tavares A, Day N, Lindsay JA, Edgeworth JD, de Lencastre H, Parkhill J, Peacock SJ, Bentley SD: Evolution of MRSA during hospital transmission and intercontinental spread. Science. 2010, 327: 469-474. 10.1126/science.1182395.
Article
PubMed Central
CAS
PubMed
Google Scholar
Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010, 5: e11147-10.1371/journal.pone.0011147.
Article
PubMed Central
PubMed
Google Scholar
Yang Z: PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol. 2007, 24: 1586-1591. 10.1093/molbev/msm088.
Article
CAS
PubMed
Google Scholar
Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986, 3: 418-426.
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
PubMed Central
CAS
PubMed
Google Scholar