Ahmadjian V: Artificial Reestablishment of the Lichen Cladonia cristatella. Science. 1966, 151 (3707): 199-201. 10.1126/science.151.3707.199.
Article
CAS
PubMed
Google Scholar
Ahmadjian V, Heikkilä H: The culture and synthesis of Endocarpon pusillum and Staurothele clopima. Lichenologist. 1970, 4: 259-267. 10.1017/S0024282970000336.
Article
Google Scholar
Ahmadjian V: The lichen symbiosis. 1993, New York: John Wiley
Google Scholar
Trembley ML, Ringli C, Honegger R: Morphological and molecular analysis of early stages in the resynthesis of the lichen Baeomyces rufus. Mycol Res. 2002, 106 (7): 768-776. 10.1017/S0953756202006081.
Article
CAS
Google Scholar
Armaleo D, Joneson S, McDonald T, Wray G, Dietrich F, Miadlikowska J, Lutzoni F: Decoding symbiosis: sequencing the two genomes of the lichen Cladonia grayi [abstract]. 2008, The sixth International Association for Lichenology Symposium and Annual Meeting of the American Bryological and Lichenological Society
Google Scholar
Armaleo D, Mueller O, Lutzoni F, Martin F, Blanc G, Merchant S, Collart F: Decoding symbiosis: the two genomes of the lichen Cladonai grayi [abstract]. Book of abstracts. 2012, The 7th Symposium of the International Association for Lichenology, 21-
Google Scholar
Gogarten JP, Doolittle WF, Lawrence JG: Prokaryotic evolution in light of gene transfer. Mol Biol Evol. 2002, 19 (12): 2226-2238. 10.1093/oxfordjournals.molbev.a004046.
Article
CAS
PubMed
Google Scholar
Marcet-Houben M, Gabaldon T: Acquisition of prokaryotic genes by fungal genomes. Trends Genet. 2010, 26 (1): 5-8. 10.1016/j.tig.2009.11.007.
Article
CAS
PubMed
Google Scholar
Slot JC, Hibbett DS: Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study. PLoS One. 2007, 2 (10): e1097-10.1371/journal.pone.0001097.
Article
PubMed Central
PubMed
Google Scholar
McDonald TR, Dietrich FS, Lutzoni F: Multiple horizontal gene transfers of ammonium transporters/ammonia permeases from prokaryotes to eukaryotes: toward a new functional and evolutionary classification. Mol Biol Evol. 2012, 29 (1): 51-60. 10.1093/molbev/msr123.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marini AM, Vissers S, Urrestarazu A, Andre B: Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 1994, 13 (15): 3456-3463.
PubMed Central
CAS
PubMed
Google Scholar
Ninnemann O, Jauniaux JC, Frommer WB: Identification of a high affinity NH4+ transporter from plants. EMBO J. 1994, 13 (15): 3464-3471.
PubMed Central
CAS
PubMed
Google Scholar
Blakey D, Leech A, Thomas GH, Coutts G, Findlay K, Merrick M: Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem J. 2002, 364 (Pt 2): 527-535.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simon-Rosin U, Wood C, Udvardi MK: Molecular and cellular characterisation of LjAMT2;1, an ammonium transporter from the model legume Lotus japonicus. Plant Mol Biol. 2003, 51 (1): 99-108. 10.1023/A:1020710222298.
Article
CAS
PubMed
Google Scholar
Sohlenkamp C, Shelden M, Howitt S, Udvardi M: Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 2000, 467 (2–3): 273-278.
Article
CAS
PubMed
Google Scholar
Winkler FK: Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch. 2006, 451 (6): 701-707. 10.1007/s00424-005-1511-6.
Article
CAS
PubMed
Google Scholar
Zheng L, Kostrewa D, Berneche S, Winkler FK, Li XD: The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci U S A. 2004, 101 (49): 17090-17095. 10.1073/pnas.0406475101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang H, Xu Y, Zhu W, Chen K, Jiang H: Detailed mechanism for AmtB conducting NH4+/NH3: molecular dynamics simulations. Biophys J. 2007, 92 (3): 877-885. 10.1529/biophysj.106.090191.
Article
PubMed Central
CAS
PubMed
Google Scholar
Javelle A, Lupo D, Zheng L, Li XD, Winkler FK, Merrick M: An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. J Biol Chem. 2006, 281 (51): 39492-39498. 10.1074/jbc.M608325200.
Article
CAS
PubMed
Google Scholar
Khademi S, O'Connell J, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM: Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science. 2004, 305 (5690): 1587-1594. 10.1126/science.1101952.
Article
CAS
PubMed
Google Scholar
Lamoureux G, Javelle A, Baday S, Wang S, Berneche S: Transport mechanisms in the ammonium transporter family. Transfus Clin Biol. 2010, 17 (3): 168-175. 10.1016/j.tracli.2010.06.004.
Article
CAS
PubMed
Google Scholar
Lamoureux G, Klein ML, Berneche S: A stable water chain in the hydrophobic pore of the AmtB ammonium transporter. Biophys J. 2007, 92 (9): L82-L84. 10.1529/biophysj.106.102756.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marini AM, Urrestarazu A, Beauwens R, Andre B: The Rh (rhesus) blood group polypeptides are related to NH4+ transporters. Trends Biochem Sci. 1997, 22 (12): 460-461. 10.1016/S0968-0004(97)01132-8.
Article
CAS
PubMed
Google Scholar
Kustu S, Inwood W: Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol. 2006, 13 (1–2): 103-110.
Article
CAS
PubMed
Google Scholar
Li X, Jayachandran S, Nguyen HH, Chan MK: Structure of the Nitrosomonas europaea Rh protein. Proc Natl Acad Sci U S A. 2007, 104 (49): 19279-19284. 10.1073/pnas.0709710104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM: Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci U S A. 2010, 107 (21): 9638-9643. 10.1073/pnas.1003587107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Monahan BJ, Askin MC, Hynes MJ, Davis MA: Differential expression of Aspergillus nidulans ammonium permease genes is regulated by GATA transcription factor AreA. Eukaryot Cell. 2006, 5 (2): 226-237. 10.1128/EC.5.2.226-237.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Monahan BJ, Fraser JA, Hynes MJ, Davis MA: Isolation and characterization of two ammonium permease genes, meaA and mepA, from Aspergillus nidulans. Eukaryot Cell. 2002, 1 (1): 85-94. 10.1128/EC.1.1.85-94.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Monahan BJ, Unkles SE, Tsing IT, Kinghorn JR, Hynes MJ, Davis MA: Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA. Fungal Genet Biol. 2002, 36 (1): 35-46. 10.1016/S1087-1845(02)00004-X.
Article
CAS
PubMed
Google Scholar
Marini AM, Soussi-Boudekou S, Vissers S, Andre B: A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol. 1997, 17 (8): 4282-4293.
Article
PubMed Central
CAS
PubMed
Google Scholar
Javelle A, Andre B, Marini AM, Chalot M: High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends Microbiol. 2003, 11 (2): 53-55. 10.1016/S0966-842X(02)00012-4.
Article
CAS
PubMed
Google Scholar
Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N: GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol. 2006, 43 (2): 102-110. 10.1016/j.fgb.2005.10.005.
Article
CAS
PubMed
Google Scholar
Marini AM, Andre B: In vivo N-glycosylation of the Mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol Microbiol. 2000, 38 (3): 552-564. 10.1046/j.1365-2958.2000.02151.x.
Article
CAS
PubMed
Google Scholar
Montanini B, Moretto N, Soragni E, Percudani R, Ottonello S: A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol. 2002, 36 (1): 22-34. 10.1016/S1087-1845(02)00001-4.
Article
CAS
PubMed
Google Scholar
Sohlenkamp C, Wood CC, Roeb GW, Udvardi MK: Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane. Plant Physiol. 2002, 130 (4): 1788-1796. 10.1104/pp.008599.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, et al: The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic biology. 2009, 58 (2): 224-239. 10.1093/sysbio/syp020.
Article
CAS
PubMed
Google Scholar
Spatafora JW, Sung GH, Johnson D, Hesse C, O'Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, et al: A five-gene phylogeny of Pezizomycotina. Mycologia. 2006, 98 (6): 1018-1028. 10.3852/mycologia.98.6.1018.
Article
CAS
PubMed
Google Scholar
Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M: The expanded family of ammonium transporters in the perennial poplar plant. New Phytol. 2007, 174 (1): 137-150. 10.1111/j.1469-8137.2007.01992.x.
Article
CAS
PubMed
Google Scholar
Ludewig U, von Wiren N, Frommer WB: Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J Biol Chem. 2002, 277 (16): 13548-13555. 10.1074/jbc.M200739200.
Article
CAS
PubMed
Google Scholar
Mayer M, Dynowski M, Ludewig U: Ammonium ion transport by the AMT/Rh homologue LeAMT1;1. Biochem J. 2006, 396 (3): 431-437. 10.1042/BJ20060051.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mayer M, Ludewig U: Role of AMT1;1 in NH4+ acquisition in Arabidopsis thaliana. Plant Biol (Stuttg). 2006, 8 (4): 522-528. 10.1055/s-2006-923877.
Article
CAS
Google Scholar
Andrade SL, Dickmanns A, Ficner R, Einsle O: Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci U S A. 2005, 102 (42): 14994-14999. 10.1073/pnas.0506254102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Itoh T, Suzuki K, Sanchez PC, Nakase T: Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol. 1999, 49 (Pt 3): 1157-1163.
Article
CAS
PubMed
Google Scholar
Brock TD, Brock KM, Belly RT, Weiss RL: Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972, 84 (1): 54-68. 10.1007/BF00408082.
Article
CAS
PubMed
Google Scholar
She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, et al: The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A. 2001, 98 (14): 7835-7840. 10.1073/pnas.141222098.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T: Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles. 2002, 6 (1): 39-44. 10.1007/s007920100221.
Article
PubMed
Google Scholar
Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W: Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A. 2004, 101 (24): 9091-9096. 10.1073/pnas.0401356101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W: Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol. 1995, 177 (24): 7050-7059.
PubMed Central
CAS
PubMed
Google Scholar
Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL: Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol. 2004, 70 (4): 2079-2088. 10.1128/AEM.70.4.2079-2088.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goltsman DS, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, Mueller RS, Dick GJ, Sun CL, Wheeler KE, Zemla A, et al: Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol. 2009, 75 (13): 4599-4615. 10.1128/AEM.02943-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kelly DP, Wood AP: Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol. 2000, 50 (Pt 2): 511-516.
Article
PubMed
Google Scholar
Valdes J, Ossandon F, Quatrini R, Dopson M, Holmes DS: Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J Bacteriol. 2011, 193 (24): 7003-7004. 10.1128/JB.06281-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS: Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics. 2008, 9: 597-10.1186/1471-2164-9-597.
Article
PubMed Central
PubMed
Google Scholar
Valdes J, Quatrini R, Hallberg K, Dopson M, Valenzuela PD, Holmes DS: Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol. 2009, 191 (18): 5877-5878. 10.1128/JB.00843-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clum A, Nolan M, Lang E, et al: Glavina Del Rio T, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Bruce D, et al: Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICP). Stand Genomic Sci. 2009, 1 (1): 38-45. 10.4056/sigs.1463.
Article
PubMed Central
PubMed
Google Scholar
Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, et al: A higher-level phylogenetic classification of the Fungi. Mycol Res. 2007, 111 (Pt 5): 509-547.
Article
PubMed
Google Scholar
Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, et al: Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot. 2004, 91 (10): 1446-1480. 10.3732/ajb.91.10.1446.
Article
PubMed
Google Scholar
Miadlikowska J, Lutzoni F: Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. Am J Bot. 2004, 91 (3): 449-464. 10.3732/ajb.91.3.449.
Article
CAS
PubMed
Google Scholar
Gaya E, Högnabba F, Holguin A, Molnar K, Fernández-Brime S, Stenroos S, Arup U, Søchting U, Van den Boom P, Lücking R, Sipman HJM, Lutzoni F: Implementing a cumulative super-matrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota. Mol Phylogenet Evol. 2012, 63: 374-387. 10.1016/j.ympev.2012.01.012.
Article
PubMed
Google Scholar
Parra G, Bradnam K, Ning Z, Keane T, Korf I: Assessing the gene space in draft genomes. Nucleic Acids Res. 2009, 37 (1): 289-297. 10.1093/nar/gkn916.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007, 23 (9): 1061-1067. 10.1093/bioinformatics/btm071.
Article
CAS
PubMed
Google Scholar
Aspergillus Genome Database. http://www.aspergillusgenome.org/,
Neurospora crassa Database. http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html,
Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F: A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification?. Syst Biol. 2009, 58 (3): 283-297. 10.1093/sysbio/syp001.
Article
PubMed
Google Scholar
Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F: Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environmental microbiology. 2012, 14 (1): 147-161. 10.1111/j.1462-2920.2011.02560.x.
Article
CAS
PubMed
Google Scholar
Crittenden PD, David JC, Hawksworth DL, Campbell FS: Attempted isolation and success in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytol. 1995, 130: 267-297. 10.1111/j.1469-8137.1995.tb03048.x.
Article
Google Scholar
Sangvichien E, Hawksworth DL, Whalley AJ: Ascospore discharge, germination and culture of fungal partners of tropical lichens, including the use of a novel culture technique. IMA Fungus. 2011, 2: 143-153. 10.5598/imafungus.2011.02.02.05.
Article
PubMed Central
PubMed
Google Scholar
Xanthoria parietina. http://genome.jgi-psf.org/Xanpa1/Xanpa1.home.html,
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, et al: Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature. 2006, 443 (7113): 818-822. 10.1038/nature05110.
Article
CAS
PubMed
Google Scholar
Brodo IM: The Lichen Genus Coccotrema in North America. The Bryologist. 1973, 76 (2): 260-270. 10.2307/3241328.
Article
Google Scholar
Richards TA, Soanes DM, Foster PG, Leonard G, Thornton CR, Talbot NJ: Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell. 2009, 21 (7): 1897-1911. 10.1105/tpc.109.065805.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lorenz MC, Heitman J: The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 1998, 17 (5): 1236-1247. 10.1093/emboj/17.5.1236.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rutherford JC, Lin X, Nielsen K, Heitman J: Amt2 permease is required to induce ammonium-responsive invasive growth and mating in Cryptococcus neoformans. Eukaryot Cell. 2008, 7 (2): 237-246. 10.1128/EC.00079-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith DG, Garcia-Pedrajas MD, Gold SE, Perlin MH: Isolation and characterization from pathogenic fungi of genes encoding ammonium permeases and their roles in dimorphism. Mol Microbiol. 2003, 50 (1): 259-275. 10.1046/j.1365-2958.2003.03680.x.
Article
CAS
PubMed
Google Scholar
Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR: Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992, 68 (6): 1077-1090. 10.1016/0092-8674(92)90079-R.
Article
CAS
PubMed
Google Scholar
Mumberg D, Muller R, Funk M: Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995, 156 (1): 119-122. 10.1016/0378-1119(95)00037-7.
Article
CAS
PubMed
Google Scholar
Gietz RD, Schiestl RH: Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols. 2007, 2 (1): 35-37. 10.1038/nprot.2007.14.
Article
CAS
PubMed
Google Scholar
Raymond CK, Pownder TA, Sexson SL: General method for plasmid construction using homologous recombination. Biotechniques. 1999, 26 (1): 134-138. 140–141
CAS
PubMed
Google Scholar
Armaleo D, May S: Sizing the fungal and algal genomes of the lichen Cladonia grayi through quantitative PCR. Symbiosis. 2009, 49: 43-51. 10.1007/s13199-009-0012-3.
Article
Google Scholar
Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18 (5): 821-829. 10.1101/gr.074492.107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maddison DR, Maddison WP: MacClade 4: Analysis of phylogeny and character evolution. 4.08ath edition. 2005, Sunderland, MA: Sinauer Associates
Google Scholar
Posada D: jModeltest: phylogenetic model averaging. Mol Biol Evol. 2008, 25: 1253-1256. 10.1093/molbev/msn083.
Article
CAS
PubMed
Google Scholar
Nylander JAA: Mr. ModelTest v2. 2004, Evolutionary Biology Centre, Upsalla University, Program distributed by the author
Google Scholar
Stamatakis A, Ludwig T, Meier H: RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005, 21 (4): 456-463. 10.1093/bioinformatics/bti191.
Article
CAS
PubMed
Google Scholar
Swofford DL: PAUP*. Phylogenetic analysis using parsimony (*and other methods). 4.0 b 10th edition. 2002, Sunderland, MA: Sinauer Associates
Google Scholar
Grenson M, Mousset M, Wiame JM, Bechet J: Multiplicity of the amino acid permeases in Saccharomyces cerevisiae I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966, 127 (2): 325-338. 10.1016/0304-4165(66)90387-4.
Article
CAS
PubMed
Google Scholar