Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75 (5): 843-854. 10.1016/0092-8674(93)90529-Y.
Article
CAS
PubMed
Google Scholar
Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002, 297 (5589): 2053-2056. 10.1126/science.1076311.
Article
CAS
PubMed
Google Scholar
Pfeffer S, Zavolan M, Grasser FA, Chien MC, Russo JJ, Ju JY, John B, Enright AJ, Marks D, Sander C: Identification of virus-encoded microRNAs. Science. 2004, 304 (5671): 734-736. 10.1126/science.1096781.
Article
CAS
PubMed
Google Scholar
Kurihara Y, Watanabe Y: Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. P Natl Acad Sci USA. 2004, 101 (34): 12753-12758. 10.1073/pnas.0403115101.
Article
CAS
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116 (2): 281-297. 10.1016/S0092-8674(04)00045-5.
Article
CAS
PubMed
Google Scholar
Baumberger N, Baulcombe DC: Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. P Natl Acad Sci USA. 2005, 102 (33): 11928-11933. 10.1073/pnas.0505461102.
Article
CAS
Google Scholar
Valdes-Lopez O, Arenas-Huertero C, Ramirez M, Girard L, Sanchez F, Vance CP, Reyes JL, Hernandez G: Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots. Plant Cell Environ. 2008, 31 (12): 1834-1843. 10.1111/j.1365-3040.2008.01883.x.
Article
CAS
PubMed
Google Scholar
Guo HS, Xie Q, Fei JF, Chua NH: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell. 2005, 17 (5): 1376-1386. 10.1105/tpc.105.030841.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aukerman MJ, Sakai H: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell. 2003, 15 (11): 2730-2741. 10.1105/tpc.016238.
Article
PubMed Central
CAS
PubMed
Google Scholar
Puzey JR, Karger A, Axtell M, Kramer EM: Deep Annotation of Populus trichocarpa microRNAs from Diverse Tissue Sets. PLoS One. 2012, 7 (3): e33034-10.1371/journal.pone.0033034.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y: Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta. 2012, 235 (5): 873-883. 10.1007/s00425-011-1548-z.
Article
CAS
PubMed
Google Scholar
Liu HH, Tian X, Li YJ, Wu CA, Zheng CC: Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA. 2008, 14 (5): 836-843. 10.1261/rna.895308.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou LG, Liu YH, Liu ZC, Kong DY, Duan M, Luo LJ: Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot. 2010, 61 (15): 4157-4168. 10.1093/jxb/erq237.
Article
CAS
PubMed
Google Scholar
Frazier TP, Sun GL, Burklew CE, Zhang BH: Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol. 2011, 49 (2): 159-165. 10.1007/s12033-011-9387-5.
Article
CAS
PubMed
Google Scholar
Li BS, Qin YR, Duan H, Yin WL, Xia XL: Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot. 2011, 62 (11): 3765-3779. 10.1093/jxb/err051.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qin YR, Duan ZX, Xia XL, Yin WL: Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep. 2011, 30 (10): 1893-1907. 10.1007/s00299-011-1096-9.
Article
CAS
PubMed
Google Scholar
Wang TZ, Chen L, Zhao MG, Tian QY, Zhang WH: Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics. 2011, 12: 367-10.1186/1471-2164-12-367.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y: Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene. 2012, 504 (2): 160-165. 10.1016/j.gene.2012.05.034.
Article
CAS
PubMed
Google Scholar
Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y: Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun. 2012, 417 (2): 892-896. 10.1016/j.bbrc.2011.12.070.
Article
CAS
PubMed
Google Scholar
Monclus R, Dreyer E, Villar M, Delmotte FM, Delay D, Petit JM, Barbaroux C, Thiec D, Brechet C, Brignolas F: Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytol. 2006, 169 (4): 765-777. 10.1111/j.1469-8137.2005.01630.x.
Article
PubMed
Google Scholar
Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y: Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomic. 2012, 12 (2): 327-339. 10.1007/s10142-012-0271-6.
Article
CAS
Google Scholar
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manage. 2010, 259 (4): 660-684. 10.1016/j.foreco.2009.09.001.
Article
Google Scholar
Hamanishi ET, Campbell MM: Genome-wide responses to drought in forest trees. Forestry. 2011, 84 (3): 273-283. 10.1093/forestry/cpr012.
Article
Google Scholar
Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006, 313 (5793): 1596-1604. 10.1126/science.1128691.
Article
CAS
PubMed
Google Scholar
Lu S, Sun YH, Chiang VL: Stress-responsive microRNAs in Populus. Plant J. 2008, 55 (1): 131-151. 10.1111/j.1365-313X.2008.03497.x.
Article
CAS
PubMed
Google Scholar
Klevebring D, Street NR, Fahlgren N, Kasschau KD, Carrington JC, Lundeberg J, Jansson S: Genome-wide profiling of Populus small RNAs. BMC Genom. 2009, 10: 620-10.1186/1471-2164-10-620.
Article
Google Scholar
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39: D152-D157. 10.1093/nar/gkq1027.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hasio T: Plant responses to water stress. Annu Rev Plant Physiol Plant Mol Biol. 1973, 24: 519-570. 10.1146/annurev.pp.24.060173.002511.
Article
Google Scholar
Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL: Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell. 2005, 17 (8): 2186-2203. 10.1105/tpc.105.033456.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barakat A, Wall PK, Diloreto S, Depamphilis CW, Carlson JE: Conservation and divergence of microRNAs in Populus. BMC Genom. 2007, 8: 481-10.1186/1471-2164-8-481.
Article
Google Scholar
Hamilton AJ, Baulcombe DC: A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999, 286 (5441): 950-952. 10.1126/science.286.5441.950.
Article
CAS
PubMed
Google Scholar
Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ: Criteria for annotation of plant microRNAs. Plant Cell. 2008, 20 (12): 3186-3190. 10.1105/tpc.108.064311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mi SJ, Cai T, Hu YG, Chen Y, Hodges E, Ni FR, Wu L, Li S, Zhou H, Long CZ: Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5 ’ terminal nucleotide. Cell. 2008, 133 (1): 116-127. 10.1016/j.cell.2008.02.034.
Article
PubMed Central
CAS
PubMed
Google Scholar
Voinnet O: Origin, biogenesis, and activity of plant microRNAs. Cell. 2009, 136 (4): 669-687. 10.1016/j.cell.2009.01.046.
Article
CAS
PubMed
Google Scholar
Bonnet E, Wuyts J, Rouze P, Van de Peer Y: Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics. 2004, 20 (17): 2911-2917. 10.1093/bioinformatics/bth374.
Article
CAS
PubMed
Google Scholar
Allen E, Xie Z, Gustafson AM, Carrington JC: MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005, 121 (2): 207-221. 10.1016/j.cell.2005.04.004.
Article
CAS
PubMed
Google Scholar
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D: Specific effects of microRNAs on the plant transcriptome. Dev Cell. 2005, 8 (4): 517-527. 10.1016/j.devcel.2005.01.018.
Article
CAS
PubMed
Google Scholar
German MA, Luo SJ, Schroth G, Meyers BC, Green PJ: Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc. 2009, 4 (3): 356-362. 10.1038/nprot.2009.8.
Article
CAS
PubMed
Google Scholar
Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ: Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol. 2008, 18 (10): 758-762. 10.1016/j.cub.2008.04.042.
Article
PubMed Central
CAS
PubMed
Google Scholar
Reyes JL, Chua NH: ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 2007, 49 (4): 592-606. 10.1111/j.1365-313X.2006.02980.x.
Article
CAS
PubMed
Google Scholar
Sun GL, Stewart CN, Xiao P, Zhang BH: MicroRNA Expression Analysis in the Cellulosic Biofuel Crop Switchgrass (Panicum virgatum) under Abiotic Stress. PLoS One. 2012, 7 (3):
Ni ZY, Hu Z, Jiang QY, Zhang H: Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana. Biochem Biophys Res Commun. 2012, 427 (2): 330-335. 10.1016/j.bbrc.2012.09.055.
Article
CAS
PubMed
Google Scholar
Kantar M, Unver T, Budak H: Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genom. 2010, 10 (4): 493-507. 10.1007/s10142-010-0181-4.
Article
CAS
Google Scholar
Ferreira TH, Gentile A, Vilela RD, Costa GGL, Dias LI, Endres L, Menossi M: microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One. 2012, 7 (10): e46703-10.1371/journal.pone.0046703.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barrera-Figueroa BE, Gao L, Wu ZG, Zhou XF, Zhu JH, Jin HL, Liu RY, Zhu JK: High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol. 2012, 12: 132-10.1186/1471-2229-12-132.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trindade I, Capitao C, Dalmay T, Fevereiro MP, dos Santos DM: miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta. 2010, 231 (3): 705-716. 10.1007/s00425-009-1078-0.
Article
CAS
PubMed
Google Scholar
Oh JE, Hong SW, Lee Y, Koh EJ, Kim K, Seo YW, Chung N, Jeong M, Jang CS, Lee B: Modulation of gene expressions and enzyme activities of methionine sulfoxide reductases by cold, ABA or high salt treatments in Arabidopsis. Plant Sci. 2005, 169 (6): 1030-1036. 10.1016/j.plantsci.2005.05.033.
Article
CAS
Google Scholar
Oh SK, Baek KH, Seong ES, Joung YH, Choi GJ, Park JM, Cho HS, Kim EA, Lee S, Choi D: CaMsrB2, Pepper Methionine Sulfoxide Reductase B2, Is a Novel Defense Regulator against Oxidative Stress and Pathogen Attack. Plant Physiol. 2010, 154 (1): 245-261. 10.1104/pp.110.162339.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo XL, Wu YR, Wang YQ, Chen YM, Chu CC: OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta. 2009, 230 (1): 227-238. 10.1007/s00425-009-0934-2.
Article
CAS
PubMed
Google Scholar
Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M: Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiol. 2004, 136 (3): 3784-3794. 10.1104/pp.104.046656.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma HS, Liang D, Shuai P, Xia XL, Yin WL: The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot. 2010, 61 (14): 4011-4019. 10.1093/jxb/erq217.
Article
PubMed Central
CAS
PubMed
Google Scholar
Herl V, Fischer G, Reva VA, Stiebritz M, Muller YA, Muller-Uri F, Kreis W: The VEP1 gene (At4g24220) encodes a short-chain dehydrogenase/reductase with 3-OXO-Delta(4,5)-steroid 5 beta-reductase activity in Arabidopsis thaliana L. Biochimie. 2009, 91 (4): 517-525. 10.1016/j.biochi.2008.12.005.
Article
CAS
PubMed
Google Scholar
Jun JH, Ha CM, Nam HG: Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana. Plant Cell Physiol. 2002, 43 (3): 323-330. 10.1093/pcp/pcf042.
Article
CAS
PubMed
Google Scholar
Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y: Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res. 2007, 14 (5): 227-233. 10.1093/dnares/dsm022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY: Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell. 2005, 17 (8): 2204-2216. 10.1105/tpc.105.033076.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC: Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007, 52 (1): 133-146. 10.1111/j.1365-313X.2007.03218.x.
Article
CAS
PubMed
Google Scholar
Hu RB, Qi GA, Kong YZ, Kong DJ, Gao QA, Zhou GK: Comprehensive Analysis of NAC Domain Transcription Factor Gene Family in Populus trichocarpa. BMC Plant Biol. 2010, 10: 145-10.1186/1471-2229-10-145.
Article
PubMed Central
PubMed
Google Scholar
Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK: Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 2010, 153 (1): 185-197. 10.1104/pp.110.154773.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L: Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. P Natl Acad Sci USA. 2006, 103 (35): 12987-12992. 10.1073/pnas.0604882103.
Article
CAS
Google Scholar
Lu S, Yang C, Chiang VL: Conservation and diversity of microRNA-associated copper-regulatory networks in Populus trichocarpa. J Integr Plant Biol. 2011, 53 (11): 879-891. 10.1111/j.1744-7909.2011.01080.x.
Article
CAS
PubMed
Google Scholar
Ravet K, Danford FL, Dihle A, Pittarello M, Pilon M: Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves. Plant Physiol. 2011, 157 (3): 1300-1312. 10.1104/pp.111.183350.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC: GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol. 2009, 183 (1): 62-75. 10.1111/j.1469-8137.2009.02838.x.
Article
CAS
PubMed
Google Scholar
Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR: TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 2010, 153 (2): 590-602. 10.1104/pp.110.153320.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gonzalez WL, Negritto MA, Suarez LH, Gianoli E: Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecol. 2008, 33 (1): 128-132. 10.1016/j.actao.2007.10.004.
Article
Google Scholar
Bacelar EA, Correia CM, Moutinho-Pereira JM, Goncalves BC, Lopes JI, Torres-Pereira JMG: Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol. 2004, 24 (2): 233-239. 10.1093/treephys/24.2.233.
Article
PubMed
Google Scholar
Felippes FF, Weigel D: Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep. 2009, 10 (3): 264-270. 10.1038/embor.2008.247.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ: Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plantarum. 2008, 52 (3): 592-596. 10.1007/s10535-008-0118-0.
Article
CAS
Google Scholar
Sepulveda-Jimenez G, Rueda-Benitez P, Porta H, Rocha-Sosa M: A red beet (Beta vulgaris) UDP-glucosyltransferase gene induced by wounding, bacterial infiltration and oxidative stress. J Exp Bot. 2005, 56 (412): 605-611. 10.1093/jxb/eri036.
Article
CAS
PubMed
Google Scholar
Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, de Cotte BV, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W: Perturbation of indole-3-butyric acid homeostasis by the UDP-Glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010, 22 (8): 2660-2679. 10.1105/tpc.109.071316.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kannangara R, Motawia MS, Hansen NKK, Paquette SM, Olsen CE, Moller BL, Jorgensen K: Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Plant J. 2011, 68 (2): 287-301. 10.1111/j.1365-313X.2011.04695.x.
Article
CAS
PubMed
Google Scholar
Chang S, Puryear J, Cairney J: A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep. 1993, 11: 113-116. 10.1007/BF02670468.
Article
CAS
Google Scholar
Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ: A large genome center’s improvements to the Illumina sequencing system. Nat Methods. 2008, 5 (12): 1005-1010. 10.1038/nmeth.1270.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009, 25 (15): 1966-1967. 10.1093/bioinformatics/btp336.
Article
CAS
PubMed
Google Scholar
Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR: Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res. 2011, 39: D141-D145. 10.1093/nar/gkq1129.
Article
PubMed Central
CAS
PubMed
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008, 36: D154-D158. 10.1093/nar/gkn221.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31 (13): 3406-3415. 10.1093/nar/gkg595.
Article
PubMed Central
CAS
PubMed
Google Scholar
Audic S, Claverie JM: The significance of digital gene expression profiles. Genome Res. 1997, 7 (10): 986-995.
CAS
PubMed
Google Scholar
Man MZ, Wang X, Wang Y: POWER_SAGE: comparing statistical tests for SAGE experiments. Bioinformatics. 2000, 16 (11): 953-959. 10.1093/bioinformatics/16.11.953.
Article
CAS
PubMed
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, Barton MK, Bartel DP: MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5 ’ region. EMBO J. 2004, 23 (16): 3356-3364. 10.1038/sj.emboj.7600340.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brennecke J, Stark A, Russell RB, Cohen SM: Principles of MicroRNA-target recognition. PLoS Biol. 2005, 3 (3): 404-418.
Article
CAS
Google Scholar
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005, 433 (7027): 769-773. 10.1038/nature03315.
Article
CAS
PubMed
Google Scholar
Addo-Quaye C, Miller W, Axtell MJ: CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics. 2009, 25 (1): 130-131. 10.1093/bioinformatics/btn604.
Article
PubMed Central
CAS
PubMed
Google Scholar