Hell R, Stephan UW: Iron uptake, trafficking and homeostasis in plants. Planta. 2003, 216 (4): 541-551.
CAS
PubMed
Google Scholar
Guerinot ML, Yi Y: Iron: nutritious, noxious, and not readily available. Plant Physiol. 1994, 104 (3): 815-820.
PubMed Central
CAS
PubMed
Google Scholar
Romheld V, Marschner H: Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 1986, 80 (1): 175-180. 10.1104/pp.80.1.175.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robinson NJ, Procter CM, Connolly EL, Guerinot ML: A ferric-chelate reductase for iron uptake from soils. Nature. 1999, 397 (6721): 694-697. 10.1038/17800.
Article
CAS
PubMed
Google Scholar
Eide D, Broderius M, Fett J, Guerinot ML: A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA. 1996, 93 (11): 5624-5628. 10.1073/pnas.93.11.5624.
Article
PubMed Central
CAS
PubMed
Google Scholar
Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S: Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 1999, 119 (2): 471-480. 10.1104/pp.119.2.471.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takahashi M, Yamaguchi H, Nakanishi H, Shioiri T, Nishizawa NK, Mori S: Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol. 1999, 121 (3): 947-956. 10.1104/pp.121.3.947.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK: Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem. 2006, 281 (43): 32395-32402. 10.1074/jbc.M604133200.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Nakanishi H, Takahashi M, Kawasaki S, Nishizawa NK, Mori S: In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2′-deoxymugineic acid to mugineic acid in transgenic rice. Planta. 2001, 212 (5–6): 864-871.
Article
CAS
PubMed
Google Scholar
Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK, Mori S: Two dioxygenase genes, Ids3 and Ids2, from Hordeum vulgare are involved in the biosynthesis of mugineic acid family phytosiderophores. Plant Mol Biol. 2000, 44 (2): 199-207. 10.1023/A:1006491521586.
Article
CAS
PubMed
Google Scholar
Anderegg G, Ripperger H: Correlation between metal complex formation and biological activity of nicotianamine analogues. J Chem Soc Chem Commun. 1989, 0 (10): 647-650.
Article
CAS
Google Scholar
Reichman SM, Parker DR: Revisiting the metal-binding chemistry of nicotianamine and 2'-deoxymugineic acid. Implications for iron nutrition in strategy II plants. Plant Physiol. 2002, 129 (4): 1435-1438. 10.1104/pp.005009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rellan-Alvarez R, Abadia J, Alvarez-Fernandez A: Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2008, 22 (10): 1553-1562. 10.1002/rcm.3523.
Article
CAS
PubMed
Google Scholar
Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK: Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell. 2003, 15 (6): 1263-1280. 10.1105/tpc.010256.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U: Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell. 2012, 24 (2): 724-737. 10.1105/tpc.111.095042.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown JC, Chaney RL: Effect of iron on the transport of citrate into the xylem of soybeans and tomatoes. Plant Physiol. 1971, 47 (6): 836-840. 10.1104/pp.47.6.836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tiffin LO: Iron translocation II. citrate/iron ratios in plant stem exudates. Plant Physiol. 1966, 41 (3): 515-518. 10.1104/pp.41.3.515.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK: OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol. 2009, 70 (6): 681-692. 10.1007/s11103-009-9500-3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kakei Y, Yamaguchi I, Kobayashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK: A highly sensitive, quick and simple quantification method for nicotianamine and 2'-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol. 2009, 50 (11): 1988-1993. 10.1093/pcp/pcp141.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S: Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot. 2009, 103 (1): 1-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL: Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature. 2001, 409 (6818): 346-349. 10.1038/35053080.
Article
CAS
PubMed
Google Scholar
Chu HH, Chiecko J, Punshon T, Lanzirotti A, Lahner B, Salt DE, Walker EL: Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiol. 2010, 154 (1): 197-210. 10.1104/pp.110.159103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Le Jean M, Schikora A, Mari S, Briat JF, Curie C: A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J. 2005, 44 (5): 769-782. 10.1111/j.1365-313X.2005.02569.x.
Article
CAS
PubMed
Google Scholar
Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL: Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol. 2006, 141 (4): 1446-1458. 10.1104/pp.106.082586.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ling HQ, Koch G, Baumlein H, Ganal MW: Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA. 1999, 96 (12): 7098-7103. 10.1073/pnas.96.12.7098.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stephan UW, Grün M: Physiological disorders of the nicotianamine-auxothroph tomato mutant chloronerva at different levels of iron nutrition II. iron deficiency response and heavy metal metabolism. Biochem Physiol Pflanz. 1989, 185 (3–4): 189-200.
Article
CAS
Google Scholar
Lee S, Jeon US, Lee SJ, Kim YK, Persson DP, Husted S, Schjorring JK, Kakei Y, Masuda H, Nishizawa NK: Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci USA. 2009, 106 (51): 22014-22019. 10.1073/pnas.0910950106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lukac RJ, Aluru MR, Reddy MB: Quantification of ferritin from staple food crops. J Agric Food Chem. 2009, 57 (6): 2155-2161. 10.1021/jf803381d.
Article
CAS
PubMed
Google Scholar
Herbik A, Koch G, Mock HP, Dushkov D, Czihal A, Thielmann J, Stephan UW, Baumlein H: Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. Eur J Biochem. 1999, 265 (1): 231-239. 10.1046/j.1432-1327.1999.00717.x.
Article
CAS
PubMed
Google Scholar
Perovic D, Tiffin P, Douchkov D, Baumlein H, Graner A: An integrated approach for the comparative analysis of a multigene family: the nicotianamine synthase genes of barley. Funct Integr Genomics. 2007, 7 (2): 169-179. 10.1007/s10142-006-0040-5.
Article
CAS
PubMed
Google Scholar
Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P: The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 2009, 150 (1): 257-271. 10.1104/pp.109.136374.
Article
PubMed Central
CAS
PubMed
Google Scholar
Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S: Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J. 2001, 25 (2): 159-167. 10.1046/j.1365-313x.2001.00951.x.
Article
CAS
PubMed
Google Scholar
Mizuno D, Higuchi K, Sakamoto T, Nakanishi H, Mori S, Nishizawa NK: Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol. 2003, 132 (4): 1989-1997. 10.1104/pp.102.019869.
Article
PubMed Central
CAS
PubMed
Google Scholar
Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK: Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J. 2003, 36 (3): 366-381. 10.1046/j.1365-313X.2003.01878.x.
Article
CAS
PubMed
Google Scholar
Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, Kim H, Goicoechea JL, Chen M, Lee S: Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 2007, 3 (7): e123-10.1371/journal.pgen.0030123.
Article
PubMed Central
PubMed
Google Scholar
Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P: Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot. 2006, 57 (15): 4111-4122. 10.1093/jxb/erl184.
Article
CAS
PubMed
Google Scholar
Palmgren MG, Clemens S, Williams LE, Kramer U, Borg S, Schjorring JK, Sanders D: Zinc biofortification of cereals: problems and solutions. Trends Plant Sci. 2008, 13 (9): 464-473. 10.1016/j.tplants.2008.06.005.
Article
CAS
PubMed
Google Scholar
Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z: Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics. 2011, 12: 178-10.1186/1471-2164-12-178.
Article
PubMed Central
CAS
PubMed
Google Scholar
Javelle M, Klein-Cosson C, Vernoud V, Boltz V, Maher C, Timmermans M, Depege-Fargeix N, Rogowsky PM: Genome-wide characterization of the HD-ZIP IV transcription factor family in maize: preferential expression in the epidermis. Plant Physiol. 2011, 157 (2): 790-803. 10.1104/pp.111.182147.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei KF, Chen J, Chen YF, Wu LJ, Xie DX: Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res. 2012, 19 (2): 153-164. 10.1093/dnares/dsr048.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D: Genome-wide analysis of bZIP-encoding genes in maize. DNA Res. 2012, 19 (6): 463-476. 10.1093/dnares/dss026.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C: Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA. 2009, 106 (35): 14908-14913. 10.1073/pnas.0902350106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA: The B73 maize genome: complexity, diversity, and dynamics. Science. 2009, 326 (5956): 1112-1115. 10.1126/science.1178534.
Article
CAS
PubMed
Google Scholar
Nishizawa N, Mori S: The particular vesicle appearing in barley root cells and its relation to mugineic acid secretion. J Plant Nutr. 1987, 10 (9–16): 1013-1020.
Article
CAS
Google Scholar
Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G: Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 2009, 150 (2): 786-800. 10.1104/pp.109.135418.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK: Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem. 2011, 286 (7): 5446-5454. 10.1074/jbc.M110.180026.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kobayashi T, Nishizawa NK: Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012, 63: 131-152. 10.1146/annurev-arplant-042811-105522.
Article
CAS
PubMed
Google Scholar
Pich A, Manteuffel R, Hillmer S, Scholz G, Schmidt W: Fe homeostasis in plant cells: does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration?. Planta. 2001, 213 (6): 967-976. 10.1007/s004250100573.
Article
CAS
PubMed
Google Scholar
Murgia I, Arosio P, Tarantino D, Soave C: Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci. 2012, 17 (1): 47-55. 10.1016/j.tplants.2011.10.003.
Article
CAS
PubMed
Google Scholar
Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F: Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol. 1999, 17 (3): 282-286. 10.1038/7029.
Article
CAS
PubMed
Google Scholar
Lucca P, Hurrell R, Potrykus I: Approaches to improving the bioavailability and level of iron in rice seeds. J Sci Food Agric. 2001, 81 (9): 828-834. 10.1002/jsfa.886.
Article
CAS
Google Scholar
Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei XG: Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One. 2010, 5 (4): e10190-10.1371/journal.pone.0010190.
Article
PubMed Central
PubMed
Google Scholar
Lee S, Kim YS, Jeon US, Kim YK, Schjoerring JK, An G: Activation of Rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells. 2012, 33 (3): 269-275. 10.1007/s10059-012-2231-3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoo SD, Cho YH, Sheen J: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007, 2 (7): 1565-1572. 10.1038/nprot.2007.199.
Article
CAS
PubMed
Google Scholar
Ge L, Chen H, Jiang JF, Zhao Y, Xu ML, Xu YY, Tan KH, Xu ZH, Chong K: Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity. Plant Physiol. 2004, 135 (3): 1502-1513. 10.1104/pp.104.041996.
Article
PubMed Central
PubMed
Google Scholar