Clarke PH: The metabolic versatility of pseudomonads. Antonie Van Leeuwenhoek. 1982, 48 (2): 105-130. 10.1007/BF00405197.
CAS
PubMed
Google Scholar
Haas D, Defago G: Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005, 3 (4): 307-319. 10.1038/nrmicro1129.
CAS
PubMed
Google Scholar
Chin AWTF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenberg BJ: Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact. 2000, 13 (12): 1340-1345. 10.1094/MPMI.2000.13.12.1340.
Google Scholar
Raaijmakers JM, Bonsall RF, Weller DM: Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology. 1999, 89 (6): 470-475. 10.1094/PHYTO.1999.89.6.470.
CAS
PubMed
Google Scholar
Thomashow LS, Weller DM: Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol. 1988, 170 (8): 3499-3508.
PubMed Central
CAS
PubMed
Google Scholar
Huang X, Zhang X, Xu Y: PltR expression modulated by the global regulators GacA, RsmA, LasI and RhlI in Pseudomonas sp. M18. Res Microbiol. 2008, 159 (2): 128-136. 10.1016/j.resmic.2007.10.006.
CAS
PubMed
Google Scholar
Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Thomashow LS, Xu Y: Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol. 2007, 54 (4): 302-306. 10.1007/s00284-006-0444-4.
CAS
PubMed
Google Scholar
Howell CR, Stipanovic RD: Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology. 1980, 70: 712-715. 10.1094/Phyto-70-712.
CAS
Google Scholar
Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE: Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol. 1999, 181 (7): 2166-2174.
PubMed Central
CAS
PubMed
Google Scholar
Hammer PE, Hill DS, Lam ST, Van Pee KH, Ligon JM: Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl Environ Microbiol. 1997, 63 (6): 2147-2154.
PubMed Central
CAS
PubMed
Google Scholar
Laville J, Blumer C, Von Schroetter C, Gaia V, Defago G, Keel C, Haas D: Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol. 1998, 180 (12): 3187-3196.
PubMed Central
CAS
PubMed
Google Scholar
Okon Y, Bloemberg GV, Lugtenberg BJJ: Biotechnology of biofertilization and phytostimulation. In Agricultural Biotechnology. Edited by: Altman A. 1998, New York: Marcel Dekker, 327-349.
Google Scholar
Rodríguez-Palenzuela P, Matas IM, Murillo J, López-Solanilla E, Bardaji L, Pérez-Martínez I, Rodríguez-Moskera ME, Penyalver R, López MM, Quesada JM, Biehl BS, Perna NT, Glasner JD, Cabot EL, Neeno-Eckwall E, Ramos C: Annotation and overview of the Pseudomonas savastanoi pv. savastanoi NCPPB 3335 draft genome reveals the virulence gene complement of a tumour-inducing pathogen of woody hosts. Environ Microbiol. 2010, 12 (6): 1604-1620.
PubMed
Google Scholar
Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, Zhang X, Moon CD, Gehrig SM, Godfrey SAC, Knight CG, Malone JG, Robinson Z, Spiers AJ, Harris S, Challis GL, Yaxley AM, Harris D, Seeger K, Murphy L, Rutter S, Squares R, Quail MA, Saunders E, Mavromatis K, Brettin TS, Bentley SD, Hothersall J, Stephens E, Thomas CM: Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009, 10 (5): R51-10.1186/gb-2009-10-5-r51.
PubMed Central
PubMed
Google Scholar
Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D: Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 2011, 35 (2): 299-323. 10.1111/j.1574-6976.2010.00249.x.
PubMed Central
CAS
PubMed
Google Scholar
Collins FS, Green ED, Guttmacher AE, Guyer MS: A vision for the future of genomics research. Nature. 2003, 422 (6934): 835-847. 10.1038/nature01626.
CAS
PubMed
Google Scholar
Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS, Thomashow LS, Loper JE: Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 2005, 23 (7): 873-878. 10.1038/nbt1110.
CAS
PubMed
Google Scholar
Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q: Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A. 2008, 105 (21): 7564-7569. 10.1073/pnas.0801093105.
PubMed Central
CAS
PubMed
Google Scholar
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D: Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2002, 4 (12): 799-808. 10.1046/j.1462-2920.2002.00366.x.
CAS
PubMed
Google Scholar
Yu H, Tang H, Wang L, Yao Y, Wu G, Xu P: Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16. J Bacteriol. 2011, 193 (19): 5541-5542. 10.1128/JB.05663-11.
PubMed Central
CAS
PubMed
Google Scholar
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000, 406 (6799): 959-964. 10.1038/35023079.
CAS
PubMed
Google Scholar
Wu D, Ye J, Ou H, Wei X, Huang X, He Y, Xu Y: Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics. 2011, 12 (1): 438-10.1186/1471-2164-12-438.
PubMed Central
CAS
PubMed
Google Scholar
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D'Ascenzo M: The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A. 2003, 100 (18): 10181-10186. 10.1073/pnas.1731982100.
PubMed Central
CAS
PubMed
Google Scholar
Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Medigue C, Boccard F: Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol. 2006, 24 (6): 673-679. 10.1038/nbt1212.
CAS
PubMed
Google Scholar
Liu H, Yan A, Zhang X, Xu Y: Phenazine-1-carboxylic acid biosynthesis in Pseudomonas chlororaphis GP72 is positively regulated by the sigma factor RpoN. World J Microbiol Biotechnol. 2008, 24 (9): 1961-1966. 10.1007/s11274-008-9655-0.
CAS
Google Scholar
Maddula VSRK, Pierson EA, Pierson LS: Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30–84: effects on biofilm formation and pathogen inhibition. J Bacteriol. 2008, 190 (8): 2759-2766. 10.1128/JB.01587-07.
PubMed Central
CAS
PubMed
Google Scholar
Spencer M, Ryu CM, Yang KY, Kim YC, Kloepper JW, Anderson AJ: Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol Molec Plant Pathol. 2003, 63 (1): 27-34. 10.1016/j.pmpp.2003.09.002.
CAS
Google Scholar
Shen X, Chen M, Hu H, Wang W, Peng H, Xu P, Zhang X: Genome sequence of Pseudomonas chlororaphis GP72, a root-colonizing biocontrol strain. J Bacteriol. 2012, 194 (5): 1269-1270. 10.1128/JB.06713-11.
PubMed Central
CAS
PubMed
Google Scholar
Liu H, Dong D, Peng H, Zhang X, Xu Y: Genetic diversity of phenazine- and pyoluteorin-producing pseudomonads isolated from green pepper rhizosphere. Arch Microbiol. 2006, 185 (2): 91-98. 10.1007/s00203-005-0072-6.
CAS
PubMed
Google Scholar
Huang L, Chen M, Wang W, Hu H, Peng H, Xu Y, Zhang X: Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Eur J Appl Microbiol Biotech. 2010, 89 (1): 169-177.
Google Scholar
Howell C, Stipanovic R: Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology. 1979, 69 (5): 480-482. 10.1094/Phyto-69-480.
CAS
Google Scholar
Ge Y, Huang X, Wang S, Zhang X, Xu Y: Phenazine-1-carboxylic acid is negatively regulated and pyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett. 2004, 237 (1): 41-47. 10.1111/j.1574-6968.2004.tb09676.x.
CAS
PubMed
Google Scholar
Huang J, Xu Y, Zhang H, Li Y, Huang X, Ren B, Zhang X: Temperature-dependent expression of phzM and its regulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. Appl Environ Microbiol. 2009, 75 (20): 6568-6580. 10.1128/AEM.01148-09.
PubMed Central
CAS
PubMed
Google Scholar
Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS: Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol. 2001, 183 (21): 6454-6465. 10.1128/JB.183.21.6454-6465.2001.
PubMed Central
CAS
PubMed
Google Scholar
Gibson J, Sood A, Hogan DA: Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol. 2009, 75 (2): 504-513. 10.1128/AEM.01037-08.
PubMed Central
CAS
PubMed
Google Scholar
Qiu Y, Mo X, You C, Wang D: Investigation of dinitrogen fixation bacteria isolated from rice rhizosphere. Chinese Sc bull (kexuetongbao). 1981, 26 (26): 383-384.
Google Scholar
Vermeiren H, Willems A, Schoofs G, de Mot R, Keijers V, Hai W, Vanderleyden J: The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol. 1999, 22 (2): 215-224. 10.1016/S0723-2020(99)80068-X.
CAS
PubMed
Google Scholar
Li D, Yan Y, Ping S, Chen M, Zhang W, Li L, Lin W, Geng L, Liu W, Lu W, Lin M: Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol. 2010, 10 (1): 36-10.1186/1471-2180-10-36.
PubMed Central
PubMed
Google Scholar
Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao X, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K, Ivanova N, Kyrpides NC: The integrated microbial genomes (IMG) system. Nucleic Acids Res. 2006, 34 (Database issue): 344-348.
Google Scholar
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001, 29 (1): 22-28. 10.1093/nar/29.1.22.
PubMed Central
CAS
PubMed
Google Scholar
Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. Bioinformatics. 2005, 21 (16): 3422-3423. 10.1093/bioinformatics/bti553.
CAS
PubMed
Google Scholar
Hallin PF, Binnewies TT, Ussery DW: The genome BLASTatlas – a GeneWiz extension for visualization of whole-genome homology. Mol Biosyst. 2008, 4 (5): 363-371. 10.1039/b717118h.
CAS
PubMed
Google Scholar
Shao Y, He X, Harrison EM, Tai C, Ou HY, Rajakumar K, Deng Z: mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res. 2010, 38 (Web Server issue): 194-200.
Google Scholar
Lessie TG, Phibbs PV: Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol. 1984, 38: 359-388. 10.1146/annurev.mi.38.100184.002043.
CAS
PubMed
Google Scholar
Jones-Mortimer MC, Kornberg HL: Genetical analysis of fructose utilization by Escherichia coli. Proc R Soc Lond B Biol Sci. 1974, 187 (1087): 121-131. 10.1098/rspb.1974.0066.
CAS
PubMed
Google Scholar
Rovira AD: Plant root exudates. Bot Rev. 1969, 35: 35-57. 10.1007/BF02859887.
CAS
Google Scholar
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM: The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006, 57: 233-266. 10.1146/annurev.arplant.57.032905.105159.
CAS
PubMed
Google Scholar
Gibson DT, Parales RE: Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol. 2000, 11 (3): 236-243. 10.1016/S0958-1669(00)00090-2.
CAS
PubMed
Google Scholar
Gao J, Ellis LB, Wackett LP: The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res. 2010, 38 (Database issue): 488-491.
Google Scholar
Dagley S: Catabolism of aromatic compounds by micro-organisms. Adv Microb Physiol. 1971, 6: 1-46.
CAS
PubMed
Google Scholar
Jimenez JI, Minambres B, Garcia JL, Diaz E: Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol. 2002, 4 (12): 824-841. 10.1046/j.1462-2920.2002.00370.x.
CAS
PubMed
Google Scholar
Harwood CS, Parales RE: The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996, 50: 553-590. 10.1146/annurev.micro.50.1.553.
CAS
PubMed
Google Scholar
Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A: Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett. 2003, 227 (2): 219-227. 10.1016/S0378-1097(03)00684-0.
CAS
PubMed
Google Scholar
Neidle E, Hartnett C, Ornston L, Bairoch A, Rekik M, Harayama S: Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1, 2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol. 1991, 173 (17): 5385-5395.
PubMed Central
CAS
PubMed
Google Scholar
Balashova NV, Stolz A, Knackmuss HJ, Kosheleva IA, Naumov AV, Boronin AM: Purification and characterization of a salicylate hydroxylase involved in 1-hydroxy-2-naphthoic acid hydroxylation from the naphthalene and phenanthrene-degrading bacterial strain Pseudomonas putida BS202-P1. Biodegradation. 2001, 12 (3): 179-188. 10.1023/A:1013126723719.
CAS
PubMed
Google Scholar
Powlowski J, Sahlman L, Shingler V: Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600. J Bacteriol. 1993, 175 (2): 377-385.
PubMed Central
CAS
PubMed
Google Scholar
Lee SJ, Ko JH, Kang HY, Lee Y: Coupled expression of MhpE aldolase and MhpF dehydrogenase in Escherichia coli. Biochem Biophys Res Commun. 2006, 346 (3): 1009-1015. 10.1016/j.bbrc.2006.06.009.
CAS
PubMed
Google Scholar
Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE: Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol. 1994, 176 (21): 6479-6488.
PubMed Central
CAS
PubMed
Google Scholar
Priefert H, Rabenhorst J, Steinbuchel A: Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J Bacteriol. 1997, 179 (8): 2595-2607.
PubMed Central
CAS
PubMed
Google Scholar
Adachi O, Tanasupawat S, Yoshihara N, Toyama H, Matsushita K: 3-Dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway. Biosci Biotechnol Biochem. 2003, 67 (10): 2124-2131. 10.1271/bbb.67.2124.
CAS
PubMed
Google Scholar
Herrmann KM, Weaver LM: The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol. 1999, 50: 473-503. 10.1146/annurev.arplant.50.1.473.
CAS
PubMed
Google Scholar
Essar DW, Eberly L, Hadero A, Crawford IP: Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol. 1990, 172 (2): 884-900.
PubMed Central
CAS
PubMed
Google Scholar
Liu W, Christenson SD, Standage S, Shen B: Biosynthesis of the enediyne antitumor antibiotic C-1027. Science. 2002, 297 (5584): 1170-1173. 10.1126/science.1072110.
CAS
PubMed
Google Scholar
Serre L, Sailland A, Sy D, Boudec P, Rolland A, Pebay-Peyroula E, Cohen-Addad C: Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. Structure. 1999, 7 (8): 977-988. 10.1016/S0969-2126(99)80124-5.
CAS
PubMed
Google Scholar
Arias-Barrau E, Olivera ER, Luengo JM, Fernández C, Galán B, García JL, Díaz E, Miñambres B: The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol. 2004, 186 (15): 5062-5077. 10.1128/JB.186.15.5062-5077.2004.
PubMed Central
CAS
PubMed
Google Scholar
Sparnins VL, Chapman PJ: Catabolism of L-tyrosine by the homoprotocatechuate pathway in Gram-positive bacteria. J Bacteriol. 1976, 127 (1): 362-366.
PubMed Central
CAS
PubMed
Google Scholar
Barbour MG, Bayly RC: Control of meta-cleavage degradation of 4-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol. 1981, 147 (3): 844-850.
PubMed Central
CAS
PubMed
Google Scholar
Roper DI, Cooper RA: Subcloning and nucleotide sequence of the 3,4-dihydroxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase gene from Escherichia coli C. FEBS Lett. 1990, 275 (1–2): 53-57.
CAS
PubMed
Google Scholar
Gibello A, Ferrer E, Martin M, Garrido-Pertierra A: 3, 4-Dihydroxyphenylacetate 2, 3-dioxygenase from Klebsiella pneumoniae, a Mg (2+)-containing dioxygenase involved in aromatic catabolism. Biochem J. 1994, 301 (Pt 1): 145-
PubMed Central
CAS
PubMed
Google Scholar
Vetting MW, Wackett LP, Que L, Lipscomb JD, Ohlendorf DH: Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases. J Bacteriol. 2004, 186 (7): 1945-1958. 10.1128/JB.186.7.1945-1958.2004.
PubMed Central
CAS
PubMed
Google Scholar
Lipscomb JD: Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr Opin Struct Biol. 2008, 18 (6): 644-649. 10.1016/j.sbi.2008.11.001.
PubMed Central
CAS
PubMed
Google Scholar
Hanlon SP, Hill TK, Flavell MA, Stringfellow JM, Cooper RA: 2-Phenylethylamine catabolism by Escherichia coli K-12: gene organization and expression. Microbiology. 1997, 143: 513-518. 10.1099/00221287-143-2-513.
CAS
PubMed
Google Scholar
Sun D, Ono K, Okajima T, Tanizawa K, Uchida M, Yamamoto Y, Mathews FS, Davidson VL: Chemical and kinetic reaction mechanisms of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans. Biochemistry. 2003, 42 (37): 10896-10903. 10.1021/bi035062r.
CAS
PubMed
Google Scholar
Arias S, Olivera ER, Arcos M, Naharro G, Luengo JM: Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ Microbiol. 2008, 10 (2): 413-432. 10.1111/j.1462-2920.2007.01464.x.
CAS
PubMed
Google Scholar
Olivera ER, Minambres B, Garcia B, Muniz C, Moreno MA, Ferrandez A, Diaz E, Garcia JL, Luengo JM: Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci U S A. 1998, 95 (11): 6419-6424. 10.1073/pnas.95.11.6419.
PubMed Central
CAS
PubMed
Google Scholar
Luengo JM, Garcia JL, Olivera ER: The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol. 2001, 39 (6): 1434-1442. 10.1046/j.1365-2958.2001.02344.x.
CAS
PubMed
Google Scholar
Parales RE, Resnick SM: Aromatic ring hydroxylating dioxygenases. Pseudomonas. 2006, 287: 287-340.
Google Scholar
Bertin C, Yang X, Weston LA: The role of root exudates and allelochemicals in the rhizosphere. Plant Soil. 2003, 256 (1): 67-83.
CAS
Google Scholar
Lugtenberg B, Kamilova F: Plant-growth-promoting rhizobacteria. Annu Rev Microbioz. 2009, 63 (1): 541-556. 10.1146/annurev.micro.62.081307.162918.
CAS
Google Scholar
Van Gundy SD, Kirkpatrick JD, Golden J: The nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. J Nematol. 1977, 9 (2): 113-121.
PubMed Central
CAS
PubMed
Google Scholar
Kamilova F, Lamers G, Lugtenberg B: Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol. 2008, 10 (9): 2455-2461. 10.1111/j.1462-2920.2008.01638.x.
PubMed
Google Scholar
Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F: Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A. 2005, 102 (48): 17454-17459. 10.1073/pnas.0506407102.
PubMed Central
CAS
PubMed
Google Scholar
Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP: Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis. 2001, 183 (12): 1767-1774. 10.1086/320737.
CAS
PubMed
Google Scholar
Hoshino N, Kimura T, Yamaji A, Ando T: Damage to the cytoplasmic membrane of Escherichia coli by catechin-copper (II) complexes. Free Radic Biol Med. 1999, 27 (11–12): 1245-1250.
CAS
PubMed
Google Scholar
Nies DH: Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 2003, 27 (2–3): 313-339.
CAS
PubMed
Google Scholar
Mejare M, Bulow L: Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 2001, 19 (2): 67-73. 10.1016/S0167-7799(00)01534-1.
CAS
PubMed
Google Scholar
Vuilleumier S, Pagni M: The elusive roles of bacterial glutathione S-transferases: new lessons from genomes. Appl Microbiol Biotechnol. 2002, 58 (2): 138-146. 10.1007/s00253-001-0836-0.
CAS
PubMed
Google Scholar
Cha JS, Cooksey DA: Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A. 1991, 88 (20): 8915-8919. 10.1073/pnas.88.20.8915.
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Rainey PB: Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol. 2008, 10 (12): 3284-3294. 10.1111/j.1462-2920.2008.01720.x.
CAS
PubMed
Google Scholar
Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV: Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999, 284 (5415): 805-808. 10.1126/science.284.5415.805.
CAS
PubMed
Google Scholar
Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A: Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science. 2003, 301 (5638): 1383-1387. 10.1126/science.1085950.
CAS
PubMed
Google Scholar
Rensing C, Fan B, Sharma R, Mitra B, Rosen BP: CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A. 2000, 97 (2): 652-656. 10.1073/pnas.97.2.652.
PubMed Central
CAS
PubMed
Google Scholar
Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR: Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci U S A. 2002, 99 (5): 2766-2771. 10.1073/pnas.052710499.
PubMed Central
CAS
PubMed
Google Scholar
Franke S, Grass G, Rensing C, Nies DH: Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol. 2003, 185 (13): 3804-3812. 10.1128/JB.185.13.3804-3812.2003.
PubMed Central
PubMed
Google Scholar
Pontel LB, Soncini FC: Alternative periplasmic copper-resistance mechanisms in Gram-negative bacteria. Mol Microbiol. 2009, 73 (2): 212-225. 10.1111/j.1365-2958.2009.06763.x.
CAS
PubMed
Google Scholar
Cai J, Salmon K, DuBow MS: A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology. 1998, 144 (Pt 10): 2705-2713.
CAS
PubMed
Google Scholar
Dey S, Rosen BP: Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol. 1995, 177 (2): 385-389.
PubMed Central
CAS
PubMed
Google Scholar
Nies DH: The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol. 1995, 177 (10): 2707-2712.
PubMed Central
CAS
PubMed
Google Scholar
Pimentel BE, Moreno-Sanchez R, Cervantes C: Efflux of chromate by Pseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett. 2002, 212 (2): 249-254. 10.1111/j.1574-6968.2002.tb11274.x.
CAS
PubMed
Google Scholar
Schalk IJ, Hannauer M, Braud A: New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol. 2011, 13 (11): 2844-2854. 10.1111/j.1462-2920.2011.02556.x.
CAS
PubMed
Google Scholar
Xavier D, Picão R, Girardello R, Fehlberg L, Gales A: Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol. 2010, 10 (1): 217-10.1186/1471-2180-10-217.
PubMed Central
PubMed
Google Scholar
Alekshun MN, Levy SB: Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007, 128 (6): 1037-1050. 10.1016/j.cell.2007.03.004.
CAS
PubMed
Google Scholar
Poole K: Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect. 2004, 10 (1): 12-26. 10.1111/j.1469-0691.2004.00763.x.
CAS
PubMed
Google Scholar
Georgopapadakou NH: Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrob Agents Chemother. 1993, 37 (10): 2045-2053. 10.1128/AAC.37.10.2045.
PubMed Central
CAS
PubMed
Google Scholar
Saier MH, Paulsen IT: Phylogeny of multidrug transporters. Semin Cell Dev Biol. 2001, 12 (3): 205-213. 10.1006/scdb.2000.0246.
CAS
PubMed
Google Scholar
Mosqueda G, Ramos JL: A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J Bacteriol. 2000, 182 (4): 937-943. 10.1128/JB.182.4.937-943.2000.
PubMed Central
CAS
PubMed
Google Scholar
Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K: mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother. 2011, 55 (2): 508-514. 10.1128/AAC.00830-10.
PubMed Central
CAS
PubMed
Google Scholar
Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC: Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol. 2001, 183 (18): 5213-5222. 10.1128/JB.183.18.5213-5222.2001.
PubMed Central
CAS
PubMed
Google Scholar
Takatsuka Y, Chen C, Nikaido H: Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A. 2010, 107 (15): 6559-6565. 10.1073/pnas.1001460107.
PubMed Central
CAS
PubMed
Google Scholar
Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE: The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol. 1996, 19 (1): 101-112. 10.1046/j.1365-2958.1996.357881.x.
CAS
PubMed
Google Scholar
Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L: Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 2003, 422 (6930): 442-446. 10.1038/nature01485.
CAS
PubMed
Google Scholar
Bolwell G, Wojtaszek P: Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective. Physiol Molec Plant Pathol. 1997, 51 (6): 347-366. 10.1006/pmpp.1997.0129.
CAS
Google Scholar
Storz G, Imlay JA: Oxidative stress. Curr Opin Microbiol. 1999, 2 (2): 188-194. 10.1016/S1369-5274(99)80033-2.
CAS
PubMed
Google Scholar
Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE: The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor σS and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol. 1998, 180 (24): 6635-6641.
PubMed Central
CAS
PubMed
Google Scholar
Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ: Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol. 2000, 182 (16): 4533-4544. 10.1128/JB.182.16.4533-4544.2000.
PubMed Central
CAS
PubMed
Google Scholar
Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE: Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect Immun. 2005, 73 (5): 2958-2966. 10.1128/IAI.73.5.2958-2966.2005.
PubMed Central
CAS
PubMed
Google Scholar
Chang WS, Li X, Halverson LJ: Influence of water limitation on endogenous oxidative stress and cell death within unsaturated Pseudomonas putida biofilms. Environ Microbiol. 2009, 11 (6): 1482-1492. 10.1111/j.1462-2920.2009.01876.x.
PubMed
Google Scholar
Fones H, Preston GM: Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol Lett. 2012, 327 (1): 1-8. 10.1111/j.1574-6968.2011.02449.x.
CAS
PubMed
Google Scholar
Ayub ND, Tribelli PM, Lopez NI: Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation. Extremophiles. 2009, 13 (1): 59-66. 10.1007/s00792-008-0197-z.
CAS
PubMed
Google Scholar
Castro-Sowinski S, Burdman S, Matan O, Okon Y: Natural functions of bacterial polyhydroxyalkanoates. In Plastics from Bacteria. Edited by: Chen GGQ. 2010, Berlin/Heidelberg: Springer, 39-61.
Google Scholar
Khairnar NP, Misra HS, Apte SK: Pyrroloquinoline-quinone synthesized in Escherichia coli by pyrroloquinoline-quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilization. Biochem Biophys Res Commun. 2003, 312 (2): 303-308. 10.1016/j.bbrc.2003.10.121.
CAS
PubMed
Google Scholar
Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A: Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol. 2001, 4 (2): 166-171. 10.1016/S1369-5274(00)00183-1.
CAS
PubMed
Google Scholar
Ermolenko DN, Makhatadze GI: Bacterial cold-shock proteins. Cell Mol Life Sci. 2002, 59 (11): 1902-1913. 10.1007/PL00012513.
CAS
PubMed
Google Scholar
Allan B, Linseman M, MacDonald LA, Lam JS, Kropinski AM: Heat shock response of Pseudomonas aeruginosa. J Bacteriol. 1988, 170 (8): 3668-3674.
PubMed Central
CAS
PubMed
Google Scholar
Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld HJ, Schirra C, Bujard H, Bukau B: A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J. 1996, 15 (3): 607-617.
PubMed Central
CAS
PubMed
Google Scholar
Csonka LN: Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989, 53 (1): 121-147.
PubMed Central
CAS
PubMed
Google Scholar
Aspedon A, Palmer K, Whiteley M: Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J Bacteriol. 2006, 188 (7): 2721-2725. 10.1128/JB.188.7.2721-2725.2006.
PubMed Central
CAS
PubMed
Google Scholar
Brown AD: Microbial water stress. Bacteriol Rev. 1976, 40 (4): 803-846.
PubMed Central
CAS
PubMed
Google Scholar
Wargo MJ, Szwergold BS, Hogan DA: Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol. 2008, 190 (8): 2690-2699. 10.1128/JB.01393-07.
PubMed Central
CAS
PubMed
Google Scholar
Styrvold OB, Falkenberg P, Landfald B, Eshoo MW, Bjornsen T, Strom AR: Selection, mapping, and characterization of osmoregulatory mutants of Escherichia coli blocked in the choline-glycine betaine pathway. J Bacteriol. 1986, 165 (3): 856-863.
PubMed Central
CAS
PubMed
Google Scholar
Lequette Y, Odberg-Ferragut C, Bohin JP, Lacroix JM: Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures. J Bacteriol. 2004, 186 (12): 3695-3702. 10.1128/JB.186.12.3695-3702.2004.
PubMed Central
CAS
PubMed
Google Scholar
Miller KJ, Wood JM: Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol. 1996, 50: 101-136. 10.1146/annurev.micro.50.1.101.
CAS
PubMed
Google Scholar
Booth IR, Higgins CF: Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress?. FEMS Microbiol Rev. 1990, 6 (2–3): 239-246.
CAS
PubMed
Google Scholar
Bolwerk A, Lagopodi AL, Wijfjes AH, Lamers GE, Chin AWTF, Lugtenberg BJ, Bloemberg GV: Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact. 2003, 16 (11): 983-993. 10.1094/MPMI.2003.16.11.983.
CAS
PubMed
Google Scholar
Lugtenberg BJ, Dekkers L, Bloemberg GV: Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol. 2001, 39: 461-490. 10.1146/annurev.phyto.39.1.461.
CAS
PubMed
Google Scholar
Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O'Gara F: Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol. 2006, 51 (3): 257-266. 10.1007/s00248-006-9019-y.
CAS
PubMed
Google Scholar
Boyd A, Simon M: Bacterial chemotaxis. Annu Rev Physiol. 1982, 44 (1): 501-517. 10.1146/annurev.ph.44.030182.002441.
CAS
PubMed
Google Scholar
de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ: Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact. 2002, 15 (11): 1173-1180. 10.1094/MPMI.2002.15.11.1173.
CAS
PubMed
Google Scholar
Wadhams GH, Armitage JP: Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol. 2004, 5 (12): 1024-1037. 10.1038/nrm1524.
CAS
PubMed
Google Scholar
Barak R, Eisenbach M: Correlation between phosphorylation of the chemotaxis protein CheY and its activity at the flagellar motor. Biochemistry. 1992, 31 (6): 1821-1826. 10.1021/bi00121a034.
CAS
PubMed
Google Scholar
Wall D, Kaiser D: Type IV pili and cell motility. Mol Microbiol. 1999, 32 (1): 1-10. 10.1046/j.1365-2958.1999.01339.x.
CAS
PubMed
Google Scholar
Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S: Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant Microbe Interact. 2001, 14 (2): 255-260. 10.1094/MPMI.2001.14.2.255.
CAS
PubMed
Google Scholar
Espinosa-Urgel M, Salido A, Ramos JL: Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol. 2000, 182 (9): 2363-2369. 10.1128/JB.182.9.2363-2369.2000.
PubMed Central
CAS
PubMed
Google Scholar
Rojas CM, Ham JH, Deng WL, Doyle JJ, Collmer A: HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A. 2002, 99 (20): 13142-13147. 10.1073/pnas.202358699.
PubMed Central
CAS
PubMed
Google Scholar
Dekkers LC, van der Bij AJ, Mulders IH, Phoelich CC, Wentwoord RA, Glandorf DC, Wijffelman CA, Lugtenberg BJ: Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact. 1998, 11 (8): 763-771. 10.1094/MPMI.1998.11.8.763.
CAS
PubMed
Google Scholar
Tomich M, Planet PJ, Figurski DH: The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol. 2007, 5 (5): 363-375. 10.1038/nrmicro1636.
CAS
PubMed
Google Scholar
O'Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O'Brien F, Flynn K, Casey PG, Munoz JA, Kearney B, Houston AM, O'Mahony C, Higgins DG, Shanahan F, Palva A, de Vos WM, Fitzgerald GF, Ventura M, O'Toole PW, van Sinderen D: Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A. 2011, 108 (27): 11217-11222. 10.1073/pnas.1105380108.
PubMed Central
PubMed
Google Scholar
Ramos-Gonzalez MI, Campos MJ, Ramos JL: Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters. J Bacteriol. 2005, 187 (12): 4033-4041. 10.1128/JB.187.12.4033-4041.2005.
PubMed Central
CAS
PubMed
Google Scholar
Buell CR, Anderson AJ: Genetic analysis of the aggA locus involved in agglutination and adherence of Pseudomonas putida, a beneficial fluorescent pseudomonad. Mol Plant Microbe Interact. 1992, 5 (2): 154-162. 10.1094/MPMI-5-154.
CAS
PubMed
Google Scholar
Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJ: A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A. 1998, 95 (12): 7051-7056. 10.1073/pnas.95.12.7051.
PubMed Central
CAS
PubMed
Google Scholar
Gal M, Preston GM, Massey RC, Spiers AJ, Rainey PB: Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol. 2003, 12 (11): 3109-3121. 10.1046/j.1365-294X.2003.01953.x.
CAS
PubMed
Google Scholar
Bender CL, Alarcon-Chaidez F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev. 1999, 63 (2): 266-292.
PubMed Central
CAS
PubMed
Google Scholar
Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS: Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol. 2010, 76 (3): 866-879. 10.1128/AEM.02009-09.
PubMed Central
CAS
PubMed
Google Scholar
Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS: phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30–84. J Bacteriol. 2001, 183 (1): 318-327. 10.1128/JB.183.1.318-327.2001.
PubMed Central
CAS
PubMed
Google Scholar
Parsons JF, Greenhagen BT, Shi K, Calabrese K, Robinson H, Ladner JE: Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry. 2007, 46 (7): 1821-1828. 10.1021/bi6024403.
PubMed Central
CAS
PubMed
Google Scholar
Pechy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD, Donahue KM, Grunder J, Loper JE, Keel C: Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol. 2008, 10 (9): 2368-2386. 10.1111/j.1462-2920.2008.01662.x.
CAS
PubMed
Google Scholar
Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, Ffrench-Constant RH: A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci U S A. 2002, 99 (16): 10742-10747. 10.1073/pnas.102068099.
PubMed Central
CAS
PubMed
Google Scholar
Meyer JM: Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol. 2000, 174 (3): 135-142. 10.1007/s002030000188.
CAS
PubMed
Google Scholar
Kloepper JW, Leong J, Teintze M, Schroth MN: Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature. 1980, 286 (5776): 885-886. 10.1038/286885a0.
CAS
Google Scholar
Phoebe CH, Combie J, Albert FG, Van Tran K, Cabrera J, Correira HJ, Guo Y, Lindermuth J, Rauert N, Galbraith W, Selitrennikoff CP: Extremophilic orgainisms as an unexplored source of antifungal compounds. J Antibiot. 2001, 54 (1): 56-65. 10.7164/antibiotics.54.56.
CAS
PubMed
Google Scholar
Franza T, Mahe B, Expert D: Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol. 2005, 55 (1): 261-275.
CAS
PubMed
Google Scholar
Owen JG, Ackerley DF: Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola1448a. BMC Microbiol. 2011, 11: 218-10.1186/1471-2180-11-218.
PubMed Central
CAS
PubMed
Google Scholar
Cornelis P: Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol. 2010, 86 (6): 1637-1645. 10.1007/s00253-010-2550-2.
CAS
PubMed
Google Scholar
Mithani A, Hein J, Preston GM: Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and nonpathogenic lifestyles in Pseudomonas. Mol Biol Evol. 2010, 28 (1): 483-499.
PubMed
Google Scholar
Vessey KJ: Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003, 255: 571-586. 10.1023/A:1026037216893.
CAS
Google Scholar
Roberts GP, MacNeil T, MacNeil D, Brill WJ: Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J Bacteriol. 1978, 136 (1): 267-279.
PubMed Central
CAS
PubMed
Google Scholar
Yan Y, Ping S, Peng J, Han Y, Li L, Yang J, Dou Y, Li Y, Fan H, Fan Y, Li D, Zhan Y, Chen M, Lu W, Zhang W, Cheng Q, Jin Q, Lin M: Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC Genomics. 2010, 11: 11-10.1186/1471-2164-11-11.
PubMed Central
PubMed
Google Scholar
Stewart V, Parales J: Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol. 1988, 170 (4): 1589-1597.
PubMed Central
CAS
PubMed
Google Scholar
Greenberg EP, Becker GE: Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads. Can J Microbiol. 1977, 23 (7): 903-907. 10.1139/m77-133.
CAS
PubMed
Google Scholar
Carlson CA, Ingraham JL: Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol. 1983, 45 (4): 1247-1253.
PubMed Central
CAS
PubMed
Google Scholar
Seitzinger SP: Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr. 1988, 702-724.
Google Scholar
Rodriguez H, Fraga R: Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 1999, 17 (4–5): 319-339.
CAS
PubMed
Google Scholar
Palm CJ, Gaffney T, Kosuge T: Cotranscription of genes encoding indoleacetic acid production in Pseudomonas syringae subsp. savastanoi. J Bacteriol. 1989, 171 (2): 1002-1009.
PubMed Central
CAS
PubMed
Google Scholar
Wang C, Knill E, Glick BR, Defago G: Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol. 2000, 46 (10): 898-907.
CAS
PubMed
Google Scholar
Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I: Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol. 2008, 146 (2): 657-668.
PubMed Central
CAS
PubMed
Google Scholar
Toyama H, Lidstrom ME: pqqA is not required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1. Microbiology. 1998, 144 (Pt 1): 183-191.
CAS
PubMed
Google Scholar
King EO, Ward MK, Raney DE: Two simple media for the demonstration of pyocyanin and fluorescin. J lab clin Med. 1954, 44 (2): 301-307.
CAS
PubMed
Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008, 9: 75-10.1186/1471-2164-9-75.
PubMed Central
PubMed
Google Scholar
Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC: IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009, 25 (17): 2271-2278. 10.1093/bioinformatics/btp393.
CAS
PubMed
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36 (Database issue): 480-484.
Google Scholar
Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012, 40 (Database issue): 742-753.
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22 (22): 4673-4680. 10.1093/nar/22.22.4673.
PubMed Central
CAS
PubMed
Google Scholar
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4 (4): 406-425.
CAS
PubMed
Google Scholar
Letunic I, Bork P: Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007, 23 (1): 127-128. 10.1093/bioinformatics/btl529.
CAS
PubMed
Google Scholar