Kersters K, Lisdiyanti P, Komagata K, Swings J: The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. The Prokaryotes. Edited by: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. 2006, New York: Springer, 163-200.
Chapter
Google Scholar
Matsutani M, Hirakawa H, Nishikura M, Soemphol W, Ali IAI, Yakushi T, Matsushita K: Increased number of arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100. Biochem Biophys Res Commun. 2011, 409: 120-124. 10.1016/j.bbrc.2011.04.126.
Article
CAS
PubMed
Google Scholar
Sengun IY, Karabiyikli S: Importance of acetic acid bacteria in food industry. Food Control. 2011, 22: 647-656. 10.1016/j.foodcont.2010.11.008.
Article
CAS
Google Scholar
Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, Yamada M, Matsushita K: Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci Biotechnol Biochem. 2011, 75: 1921-1928. 10.1271/bbb.110310.
Article
CAS
PubMed
Google Scholar
Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J: Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science. 2011, 334: 670-674. 10.1126/science.1212782.
Article
CAS
PubMed
Google Scholar
De Vuyst L, Lefeber T, Papalexandratou Z, Camu N: The functional role of lactic acid bacteria in cocoa bean fermentation. Biotechnology of Lactic Acid Bacteria: Novel Applications. Edited by: Mozzi F, Raya RR, Vignolo GM. 2010, Oxford, UK: Wiley-Blackwel, 301-325.
Chapter
Google Scholar
Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K: New developments in oxidative fermentation. Appl Microbiol Biotechnol. 2003, 60: 643-653.
Article
CAS
PubMed
Google Scholar
Raspor P, Goranovic D: Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol. 2008, 28: 101-124. 10.1080/07388550802046749.
Article
CAS
PubMed
Google Scholar
Bremus C, Herrmann U, Bringer-Meyer S, Sahm H: The use of microorganisms in L-ascorbic acid production. J Biotechnol. 2006, 124: 196-205. 10.1016/j.jbiotec.2006.01.010.
Article
CAS
PubMed
Google Scholar
Römling U: Molecular biology of cellulose production in bacteria. Res Microbiol. 2002, 153: 205-212. 10.1016/S0923-2508(02)01316-5.
Article
PubMed
Google Scholar
Matsushita K, Toyama H, Adachi O: Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol. 1994, 36: 247-301.
Article
CAS
PubMed
Google Scholar
González Á, Mas A: Differentiation of acetic acid bacteria based on sequence analysis of 16S-23S rRNA gene internal transcribed spacer sequences. Int J Food Microbiol. 2011, 147: 217-222. 10.1016/j.ijfoodmicro.2011.04.005.
Article
PubMed
Google Scholar
Matsutani M, Hirakawa H, Yakushi T, Matsushita K: Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett. 2010, 315: 122-128.
Article
PubMed
Google Scholar
Zahoor T, Siddique F, Farooq U: Isolation and characterization of vinegar culture (Acetobacter aceti) from indigenous sources. Br Food J. 2006, 108: 429-439. 10.1108/00070700610668405.
Article
Google Scholar
Sokollek SJ, Hertel C, Hammes WP: Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol. 1998, 48: 935-940. 10.1099/00207713-48-3-935.
Article
CAS
PubMed
Google Scholar
Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J: Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol. 2002, 52: 1551-1558. 10.1099/ijs.0.02064-0.
CAS
PubMed
Google Scholar
Prieto C, Jara C, Mas A, Romero J: Application of molecular methods for analysing the distribution and diversity of acetic acid bacteria in Chilean vineyards. Int J Food Microbiol. 2007, 115: 348-355. 10.1016/j.ijfoodmicro.2006.12.017.
Article
CAS
PubMed
Google Scholar
Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M, De Vuyst L: Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol. 2007, 73: 1809-1824. 10.1128/AEM.02189-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yamada Y, Hoshino K-i, Ishikawa T: The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem. 1997, 61: 1244-1251. 10.1271/bbb.61.1244.
Article
CAS
PubMed
Google Scholar
Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M: Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res. 2009, 37: 5768-5783. 10.1093/nar/gkp612.
Article
PubMed Central
CAS
PubMed
Google Scholar
Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Pérez R, Barja F: Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol. 2011, 193: 2670-2671. 10.1128/JB.00229-11.
Article
PubMed Central
PubMed
Google Scholar
Matsutani M, Hirakawa H, Saichana N, Soemphol W, Yakushi T, Matsushita K: Genome-wide phylogenetic analysis of differences in thermotolerance among closely related Acetobacter pasteurianus strains. Microbiology. 2012, 158: 229-239. 10.1099/mic.0.052134-0.
Article
CAS
PubMed
Google Scholar
Sakurai K, Arai H, Ishii M, Igarashi Y: Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology. 2010, 157: 899-910.
Article
PubMed
Google Scholar
Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, Komagata K: Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. Microbiol Cult Coll. 2003, 19: 91-98.
Google Scholar
Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U: Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol. 2005, 23: 195-200. 10.1038/nbt1062.
Article
CAS
PubMed
Google Scholar
Bertalan M, Albano R, de Padua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, Franca L, Magalhaes V, Alqueres S, Cardoso A, Almeida W, Loureiro M, Nogueira E, Cidade D, Oliveira D, Simao T, Macedo J, Valadao A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L: Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics. 2009, 10: 450-10.1186/1471-2164-10-450.
Article
PubMed Central
PubMed
Google Scholar
Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K-i, Matsushita K, Fujita N, Shirai M: Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol. 2011, 193: 6997-6998. 10.1128/JB.06158-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vegas C, Mateo E, González Á, Jara C, Guillamón JM, Poblet M, Torija MJ, Mas A: Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int J Food Microbiol. 2010, 138: 130-136. 10.1016/j.ijfoodmicro.2010.01.006.
Article
CAS
PubMed
Google Scholar
Gullo M, Caggia C, De Vero L, Giudici P: Characterization of acetic acid bacteria in ‘traditional balsamic vinegar’. Int J Food Microbiol. 2006, 106: 209-212. 10.1016/j.ijfoodmicro.2005.06.024.
Article
CAS
PubMed
Google Scholar
Haruta S, Ueno S, Egawa I, Hashiguchi K, Fujii A, Nagano M, Ishii M, Igarashi Y: Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int J Food Microbiol. 2006, 109: 79-87. 10.1016/j.ijfoodmicro.2006.01.015.
Article
CAS
PubMed
Google Scholar
Papalexandratou Z, Vrancken G, De Bruyne K, Vandamme P, De Vuyst L: Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol. 2011, 28: 1326-1338. 10.1016/j.fm.2011.06.003.
Article
CAS
PubMed
Google Scholar
Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH: The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol. 2007, 114: 168-186. 10.1016/j.ijfoodmicro.2006.09.010.
Article
CAS
PubMed
Google Scholar
Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S: Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One. 2012, 7: e38040-10.1371/journal.pone.0038040.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schwan RF, Wheals AE: The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr. 2004, 44: 205-221. 10.1080/10408690490464104.
Article
CAS
PubMed
Google Scholar
Lefeber T, Janssens M, Moens F, Gobert W, De Vuyst L: Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria. Appl Environ Microbiol. 2011, 77: 6694-6698. 10.1128/AEM.00594-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Camu N, De Winter T, Addo SK, Takrama JS, Bernaert H, De Vuyst L: Fermentation of cocoa beans: influence of microbial activities and polyphenol concentrations on the flavour of chocolate. J Sci Food Agric. 2008, 88: 2288-2297. 10.1002/jsfa.3349.
Article
CAS
Google Scholar
Lefeber T, Janssens M, Camu N, De Vuyst L: Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Appl Environ Microbiol. 2010, 76: 7708-7716. 10.1128/AEM.01206-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lefeber T, Papalexandratou Z, Gobert W, Camu N, De Vuyst L: On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiol. 2012, 30: 379-392. 10.1016/j.fm.2011.12.021.
Article
CAS
PubMed
Google Scholar
Hendrickson H, Lawrence JG: Selection for chromosome architecture in bacteria. J Mol Evol. 2006, 62: 615-629. 10.1007/s00239-005-0192-2.
Article
CAS
PubMed
Google Scholar
Gao F, Zhang C-T: Ori-finder: a web-based system for finding oriC s in unannotated bacterial genomes. BMC Bioinforma. 2008, 9: 79-10.1186/1471-2105-9-79.
Article
Google Scholar
Hendrickson H, Lawrence JG: Mutational bias suggests that replication termination occurs near the dif site, not at ter sites. Mol Microbiol. 2007, 64: 42-56. 10.1111/j.1365-2958.2007.05596.x.
Article
CAS
PubMed
Google Scholar
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H: Prophage genomics. Microbiol Mol Biol Rev. 2003, 67: 238-276. 10.1128/MMBR.67.2.238-276.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takemura H, Horinouchi S, Beppu T: Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol. 1991, 173: 7070-7076.
PubMed Central
CAS
PubMed
Google Scholar
Ardhana MM, Fleet GH: The microbial ecology of cocoa bean fermentations in Indonesia. Int J Food Microbiol. 2003, 86: 87-99. 10.1016/S0168-1605(03)00081-3.
Article
CAS
PubMed
Google Scholar
Schwan RF, Rose AH, Board RG: Microbial fermentation of cocoa beans, with emphasis on enzymatic degradation of the pulp. J Appl Bacteriol Symposium Supplement. 1995, 79: 96S-107S.
Google Scholar
Kanchanarach W, Theeragool G, Inoue T, Yakushi T, Adachi O, Matsushita K: Acetic acid fermentation of Acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Biosci Biotechnol Biochem. 2010, 74: 1591-1597. 10.1271/bbb.100183.
Article
CAS
PubMed
Google Scholar
Kanchanarach W, Theeragool G, Yakushi T, Toyama H, Adachi O, Matsushita K: Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl Microbiol Biotechnol. 2010, 85: 741-751. 10.1007/s00253-009-2203-5.
Article
CAS
PubMed
Google Scholar
Cleenwerck I, De Vos P: Polyphasic taxonomy of acetic acid bacteria: an overview of the currently applied methodology. Int J Food Microbiol. 2008, 125: 2-14. 10.1016/j.ijfoodmicro.2007.04.017.
Article
CAS
PubMed
Google Scholar
Chandra Raj K, Ingram L, Maupin-Furlow J: Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Arch Microbiol. 2001, 176: 443-451. 10.1007/s002030100348.
Article
CAS
PubMed
Google Scholar
Argüelles JC: Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol. 2000, 174: 217-224. 10.1007/s002030000192.
Article
PubMed
Google Scholar
Booth IR, Edwards MD, Black S, Schumann U, Miller S: Mechanosensitive channels in bacteria: signs of closure?. Nat Rev Microbiol. 2007, 5: 431-440. 10.1038/nrmicro1659.
Article
CAS
PubMed
Google Scholar
Kondo K, Beppu T, Horinouchi S: Cloning, sequencing, and characterization of the gene encoding the smallest subunit of the three-component membrane-bound alcohol dehydrogenase from Acetobacter pasteurianus. J Bacteriol. 1995, 177: 5048-5055.
PubMed Central
CAS
PubMed
Google Scholar
Gupta A, Singh VK, Qazi GN, Kumar A: Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol. 2001, 3: 445-456.
CAS
PubMed
Google Scholar
Shinagawa E, Matsushita K, Adachi O, Ameyama M: Purification and characterization of D-sorbitol dehydrogenase from membrane of Gluconobacter suboxydans var. α. Agric Biol Chem. 1982, 46: 135-141. 10.1271/bbb1961.46.135.
Article
CAS
Google Scholar
Garcia-Armisen T, Vercammen K, Rimaux T, Vrancken G, De Vuyst L, Cornelis P: Identification of a five-oxidoreductase-gene cluster from Acetobacter pasteurianus conferring ethanol-dependent acidification in Escherichia coli. Microbiology Open. 2012, 1: 25-32. 10.1002/mbo3.4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Greenfield S, Claus GW: Nonfunctional tricarboxylic acid cycle and the mechanism of glutamate biosynthesis in Acetobacter suboxydans. J Bacteriol. 1972, 112: 1295-1301.
PubMed Central
CAS
PubMed
Google Scholar
Sanders C, Turkarslan S, Lee D-W, Onder O, Kranz RG, Daldal F: The cytochrome c maturation components CcmF, CcmH, and CcmI form a membrane-integral multisubunit heme ligation complex. J Biol Chem. 2008, 283: 29715-29722. 10.1074/jbc.M805413200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saeki A, Matsushita K, Takeno S, Taniguchi M, Toyama H, Theeragool G, Lotong N, Adachi O: Enzymes responsible for acetate oxidation by acetic acid bacteria. Biosci Biotechnol Biochem. 1999, 63: 2102-2109. 10.1271/bbb.63.2102.
Article
CAS
Google Scholar
Mullins EA, Francois JA, Kappock TJ: A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol. 2008, 190: 4933-4940. 10.1128/JB.00405-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nakano S, Fukaya M, Horinouchi S: Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Appl Environ Microbiol. 2006, 72: 497-505. 10.1128/AEM.72.1.497-505.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K: Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology. 2005, 151: 4111-4120. 10.1099/mic.0.28350-0.
Article
CAS
PubMed
Google Scholar
Ali IAI, Akakabe Y, Moonmangmee S, Deeraksa A, Matsutani M, Yakushi T, Yamada M, Matsushita K: Structural characterization of pellicle polysaccharides of Acetobacter tropicalis SKU1100 wild type and mutant strains. Carbohydr Polym. 2011, 86: 1000-1006. 10.1016/j.carbpol.2011.05.055.
Article
CAS
Google Scholar
Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ, Barbian KD, Babar A, Dorward DW, Holland SM: Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol. 2007, 189: 8727-8736. 10.1128/JB.00793-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Constantine CZ, Starks CM, Mill CP, Ransome AE, Karpowicz SJ, Francois JA, Goodman RA, Kappock TJ: Biochemical and structural studies of N5-carboxyaminoimidazole ribonucleotide mutase from the acidophilic bacterium Acetobacter aceti. Biochemistry. 2006, 45: 8193-8208. 10.1021/bi060465n.
Article
CAS
PubMed
Google Scholar
Francois JA, Kappock TJ: Alanine racemase from the acidophile Acetobacter aceti. Protein Expr Purif. 2007, 51: 39-48. 10.1016/j.pep.2006.05.016.
Article
CAS
PubMed
Google Scholar
Matsutani M, Nishikura M, Saichana N, Hatano T, Masud-Tippayasak U, Theergool G, Yakushi T, Matsushita K: Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J Biotechnol. 2013, 165: 109-119. 10.1016/j.jbiotec.2013.03.006.
Article
CAS
PubMed
Google Scholar
Ravyts F, Barbuti S, Frustoli MA, Parolari G, Saccani G, de Vuyst L, Leroy F: Competitiveness and antibacterial potential of bacteriocin-producing starter cultures in different types of fermented sausages. J Food Prot. 2008, 71: 1817-1827.
PubMed
Google Scholar
Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res. 1998, 8: 195-202. 10.1101/gr.8.3.195.
Article
CAS
PubMed
Google Scholar
Husemann P, Stoye J: R2cat: synteny plots and comparative assembly. Bioinformatics. 2010, 26: 570-571. 10.1093/bioinformatics/btp690.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A: GenDB - an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 2003, 31: 2187-2195. 10.1093/nar/gkg312.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27: 4636-4641. 10.1093/nar/27.23.4636.
Article
PubMed Central
CAS
PubMed
Google Scholar
Badger JH, Olsen GJ: CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol. 1999, 16: 512-524. 10.1093/oxfordjournals.molbev.a026133.
Article
CAS
PubMed
Google Scholar
Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL: A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics. 2001, 17: 1123-1130. 10.1093/bioinformatics/17.12.1123.
Article
CAS
PubMed
Google Scholar
Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25: 955-964.
Article
PubMed Central
CAS
PubMed
Google Scholar
Linke B, McHardy AC, Neuweger H, Krause L, Meyer F: REGANOR: A gene prediction server for prokaryotic genomes and a database of high quality gene predictions for prokaryotes. Appl Bioinformatics. 2006, 5: 193-198. 10.2165/00822942-200605030-00008.
Article
CAS
PubMed
Google Scholar
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003, 31: 365-370. 10.1093/nar/gkg095.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR: The Pfam protein families database. Nucleic Acids Res. 2004, 32: D138-D141. 10.1093/nar/gkh121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28: 27-30. 10.1093/nar/28.1.27.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haft DH, Selengut JD, White O: The TIGRFAMs database of protein families. Nucleic Acids Res. 2003, 31: 371-373. 10.1093/nar/gkg128.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides: signalP 3.0. J Mol Biol. 2004, 340: 783-795. 10.1016/j.jmb.2004.05.028.
Article
PubMed
Google Scholar
Dodd IB, Egan JB: Improved detection of helix-turn-helix DNA-binding motif in protein sequences. Nucleic Acids Res. 1990, 18: 5019-5026. 10.1093/nar/18.17.5019.
Article
PubMed Central
CAS
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001, 305: 567-580. 10.1006/jmbi.2000.4315.
Article
CAS
PubMed
Google Scholar
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV: The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001, 29: 22-28. 10.1093/nar/29.1.22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32: D258-D261. 10.1093/nar/gkh036.
Article
CAS
PubMed
Google Scholar
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J: DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2009, 25: 119-120. 10.1093/bioinformatics/btn578.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35: W52-W57. 10.1093/nar/gkm360.
Article
PubMed Central
PubMed
Google Scholar
Castro C, Cleenwerck I, Trček J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux J-L, Gañán P: Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol. 2012, 63: 1119-1125.
Article
PubMed
Google Scholar
Blom J, Albaum S, Doppmeier D, Pühler A, Vorhölter F-J, Zakrzewski M, Goesmann A: EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinforma. 2009, 10: 1-14.
Article
Google Scholar
Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. Bioinformatics. 2005, 21: 3422-3423. 10.1093/bioinformatics/bti553.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar