Snodgrass RE: Anatomy of the honey bee. 1956, Ithaca: Cornell University
Google Scholar
Thompson PR: Histological development of cuticle in the worker honeybee, Apis mellifera adansonii. J Apic Res. 1978, 17: 32-40.
Google Scholar
Michelette ERF, Soares AEE: Characterization of preimaginal developmental stages in Africanized honey bee workers (Apis mellifera L). Apidologie. 1993, 24: 431-440. 10.1051/apido:19930410.
Article
Google Scholar
Elias-Neto M, Soares MPM, Bitondi MMG: Changes in integument structure during the imaginal molt of the honey bee. Apidologie. 2009, 40: 29-39. 10.1051/apido:2008064.
Article
Google Scholar
Hepburn HR: Structure of the integument. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Volume 3. Edited by: Kerkut GA, Gilbert LI. 1985, Oxford: Pergamon Press, 1-58.
Google Scholar
Vincent JFV, Wegst UGK: Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 2004, 33: 187-199. 10.1016/j.asd.2004.05.006.
Article
PubMed
Google Scholar
Willis JH, Iconomidou V, Smith RF, Hamodrakas SJ: Cuticular proteins. Comprehensive Molecular Insect Science. Volume 4. Edited by: Gilbert L, Iatrou K, Gill S. 2005, Oxford: Elsevier, 79-110.
Chapter
Google Scholar
Willis JH: Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Mol Biol. 2010, 40: 189-204. 10.1016/j.ibmb.2010.02.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Togawa T, Augustine Dunn W, Emmons AC, Willis JH: CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem Mol Biol. 2007, 37: 675-688. 10.1016/j.ibmb.2007.03.011.
Article
CAS
PubMed
Google Scholar
Togawa T, Dunn WA, Emmons AC, Nagao J, Willis JH: Developmental expression patterns of cuticular protein genes with the R&R Consensus from Anopheles gambiae. Insect Biochem Mol Biol. 2008, 38: 508-519. 10.1016/j.ibmb.2007.12.008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cornman RS, Willis JH: Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol Biol. 2009, 18: 607-622. 10.1111/j.1365-2583.2009.00902.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Soares MPM, Elias-Neto M, Simões ZL, Bitondi MM: A cuticle protein gene in the honeybee: expression during development and in relation to the ecdysteroid titer. Insect Biochem Mol Biol. 2007, 37: 1272-1282. 10.1016/j.ibmb.2007.07.014.
Article
CAS
PubMed
Google Scholar
Rebers JE, Riddiford LM: Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol. 1988, 203: 411-423. 10.1016/0022-2836(88)90009-5.
Article
CAS
PubMed
Google Scholar
Kucharski R, Maleszka J, Maleszka R: Novel cuticular proteins revealed by the honey bee genome. Insect Biochem Mol Biol. 2007, 37: 128-134. 10.1016/j.ibmb.2006.10.009.
Article
CAS
PubMed
Google Scholar
Soares MPM, Silva-Torres FA, Elias-Neto M, Nunes FMF, Simões ZLP, Bitondi MMG: Ecdysteroid-dependent expression of the tweedle and peroxidase genes during adult cuticle formation in the honey bee Apis mellifera. PLoS One. 2011, 6: e20513-10.1371/journal.pone.0020513.
Article
PubMed Central
CAS
PubMed
Google Scholar
Canhos LL: Caracterização de mudanças subcelulares e da expressão dos genes codificadores das enzimas tirosina hidroxilase e dopa descarboxilase no tegumento em diferenciação da abelha Apis mellifera. Monografia. 2010, Ribeirão Preto, SP, Brazil: Universidade de São Paulo, Departamento de Biologia
Google Scholar
Ote M, Mita K, Kawasaki H, Seki M, Nohata J, Kobayashi M, Shimada T: Microarray analysis of gene expression profiles in wing discs of Bombyx mori during pupal ecdysis. Insect Biochem Mol Biol. 2004, 34: 775-784. 10.1016/j.ibmb.2004.04.002.
Article
CAS
PubMed
Google Scholar
Liang J, Zhang L, Xiang Z, He N: Expression profile of cuticular genes of silkworm Bombyx mori. BMC Genomics. 2010, 11: 173-10.1186/1471-2164-11-173.
Article
PubMed Central
PubMed
Google Scholar
Dittmer NT, Hiromasa Y, Tomich JM, Lu N, Beeman RW, Kramer KJ, Kanost MR: Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J Proteome Res. 2012, 11: 269-278. 10.1021/pr2009803.
Article
CAS
PubMed
Google Scholar
Minckley RL: Comparative morphology of the mesosomal 'gland' in male large carpenter bees (Apidae: Xylocopini). Biol J Linn Soc. 1994, 53: 291-308.
Google Scholar
Cruz-Landim C, Reginato RD: Preliminar report on the presence of tegumentar glands in the thorax of Meliponinae bees (Hymenoptera, Apidae). Rev Bras Biol. 1999, 59: 167-172. 10.1590/S0034-71081999000100021.
Article
Google Scholar
Vinson SB: Ultrastructure of the mesosomal gland of Xylocopa micans Lepeletier (Hymenoptera: Anthophoridae) associated with pheromone release. Int J Insect Morphol Embryol. 1994, 23: 243-252. 10.1016/0020-7322(94)90021-3.
Article
Google Scholar
Lawrence PA, Brower DL: Myoblasts from Drosophila wing disks can contribute to developing muscles throughout the fly. Nat. 1982, 295: 55-57. 10.1038/295055a0.
Article
Google Scholar
Smyth GK: Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor. Edited by: Gentleman R, Vincent JC, Wolfagang H, Irizarry RA, Dudoit S. 2005, New York, NY: Springer Science + Business Media, Inc, 397-420.
Chapter
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995, 57: 289-300.
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25: 25-29. 10.1038/75556.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008, 4: 44-57. 10.1038/nprot.2008.211.
Article
Google Scholar
Lourenço AP, Mackert A, Cristino AS, Simões ZLP: Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie. 2008, 39: 372-385. 10.1051/apido:2008015.
Article
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J: qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8: R19-10.1186/gb-2007-8-2-r19.
Article
PubMed Central
PubMed
Google Scholar
MacIsaac K, Fraenkel E: Practical strategies for discovering regulatory DNA sequence motifs. PLoS Comput Biol. 2006, 2: e36-10.1371/journal.pcbi.0020036.
Article
PubMed Central
PubMed
Google Scholar
Barchuk A, Cristino A, Kucharski R, Costa L, Simões Z, Maleszka R: Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev Biol. 2007, 7: 70-10.1186/1471-213X-7-70.
Article
PubMed Central
PubMed
Google Scholar
Cristino AS, Nunes FMF, Lobo CH, Bitondi MMG, Simões ZLP, Fontoura Costa L, Lattorff HMG, Moritz RFA, Evans JD, Hartfelder K: Caste development and reproduction: a genome-wide analysis of hallmarks of insect eusociality. Insect Mol Biol. 2006, 15: 703-714. 10.1111/j.1365-2583.2006.00696.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roth F, Hughes J, Estep P, Church G: Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotech. 1998, 16: 939-945. 10.1038/nbt1098-939.
Article
CAS
Google Scholar
Bailey T, Elkan C: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach Learn. 1995, 21: 51-80.
Google Scholar
Liu S, Brutlag D, Liu J: An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol. 2002, 20: 835-839. 10.1038/nbt717.
Article
CAS
PubMed
Google Scholar
Hughes J, Estep P, Tavazoie S, Church G: Computational identification of Cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol. 2000, 296: 1205-1214. 10.1006/jmbi.2000.3519.
Article
CAS
PubMed
Google Scholar
Clarke ND, Granek JA: Rank order metrics for quantifying the association of sequence features with gene regulation. Bioinformatics. 2003, 19: 212-218. 10.1093/bioinformatics/19.2.212.
Article
CAS
PubMed
Google Scholar
Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Prüß M, Reuter I, Schacherer F: TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 2000, 28: 316-319. 10.1093/nar/28.1.316.
Article
PubMed Central
CAS
PubMed
Google Scholar
Costa LF, Rodrigues FA, Cristino AS: Complex networks: the key to systems biology. Genet Mol Biol. 2008, 31: 591-601. 10.1590/S1415-47572008000400001.
Article
CAS
Google Scholar
Ueda H, Sun GC, Murata T, Hirose S: A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol. 1992, 12: 5667-5672.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pinto LZ, Hartfelder K, Bitondi MM, Simões ZL: Ecdysteroid titers in pupae of highly social bees relate to distinct modes of caste development. J Insect Physiol. 2002, 48: 783-790. 10.1016/S0022-1910(02)00103-8.
Article
CAS
PubMed
Google Scholar
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics. 2000, 16: 944-945. 10.1093/bioinformatics/16.10.944.
Article
CAS
PubMed
Google Scholar
Micas AFD: Proteínas do tegumento de abelhas Apis mellifera em metamorfose: identificação por espectrometria de massa. Tese. 2012, Ribeirão Preto, SP, Brazil: Universidade de São Paulo, Departamento de Genética
Google Scholar
Zhou X, Riddiford LM: Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Dev. 2002, 129: 2259-2269.
CAS
Google Scholar
Charles JP: The regulation of expression of insect cuticle protein genes. Insect Biochem Mol Biol. 2010, 40: 205-213. 10.1016/j.ibmb.2009.12.005.
Article
CAS
PubMed
Google Scholar
Riddiford LM: Hormone action at the cellular level. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Volume 8. Edited by: Kerkut GA, Gilbert LI. 1985, Oxford: Pergamon, 2-84.
Google Scholar
Moussian B: Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol. 2010, 40: 363-375. 10.1016/j.ibmb.2010.03.003.
Article
CAS
PubMed
Google Scholar
Andersen SO, Rafn K, Roepstorff P: Sequence studies of proteins from larval and pupal cuticle of the yellow meal worm, Tenebrio molitor. Insect Biochem Mol Biol. 1997, 27: 121-131. 10.1016/S0965-1748(96)00076-8.
Article
CAS
PubMed
Google Scholar
Guan X, Middlebrooks BW, Alexander S, Wasserman SA: Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci USA. 2006, 103: 16794-16799. 10.1073/pnas.0607616103.
Article
PubMed Central
CAS
PubMed
Google Scholar
He N, Botelho JMC, McNall RJ, Belozerov V, Augustine Dunn W, Mize T, Orlando R, Willis JH: Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem Mol Biol. 2007, 37: 135-146. 10.1016/j.ibmb.2006.10.011.
Article
CAS
PubMed
Google Scholar
Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S: Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol. 2010, 40: 214-227. 10.1016/j.ibmb.2010.01.011.
Article
CAS
PubMed
Google Scholar
Andersen SO: Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem Mol Biol. 2000, 30: 569-577. 10.1016/S0965-1748(00)00029-1.
Article
CAS
PubMed
Google Scholar
Lourenço AP, Zufelato MS, Bitondi MMG, Simões ZLP: Molecular characterization of a cDNA encoding prophenoloxidase and its expression in Apis mellifera. Insect Biochem Mol Biol. 2005, 35: 541-552. 10.1016/j.ibmb.2005.01.013.
Article
PubMed
Google Scholar
Elias-Neto M, Soares MPM, Simões ZL, Hartfelder K, Bitondi MM: Developmental characterization, function and regulation of a Laccase2 encoding gene in the honey bee, Apis mellifera (Hymenoptera, Apinae). Insect Biochem Mol Biol. 2010, 40: 241-251. 10.1016/j.ibmb.2010.02.004.
Article
CAS
PubMed
Google Scholar
Locke M: The localization of a peroxidase associated with hard cuticle formation in an insect, Calpodes ethlius stoll, Lepidoptera, Hesperiidae. Tissue Cell. 1969, 1: 555-574. 10.1016/S0040-8166(69)80021-2.
Article
CAS
PubMed
Google Scholar
Hasson C, Sugumaran M: Protein cross-linking by peroxidase - possible mechanism for sclerotization of insect cuticle. Arch Insect Biochem Physiol. 1987, 5: 13-28. 10.1002/arch.940050103.
Article
CAS
Google Scholar
Bae Y-A, Cai G-B, Kim S-H, Zo Y-G, Kong Y: Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals. BMC Evol Biol. 2009, 9: 72-10.1186/1471-2148-9-72.
Article
PubMed Central
PubMed
Google Scholar
Davies KG, Curtis RHC: Cuticle surface coat of plant-parasitic nematodes. Annu Rev Phytopathol. 2011, 49: 135-156. 10.1146/annurev-phyto-121310-111406.
Article
CAS
PubMed
Google Scholar
Butler MJ, Jacobsen TL, Cain DM, Jarman MG, Hubank M, Whittle JRS, Phillips R, Simcox A: Discovery of genes with highly restricted expression patterns in the Drosophila wing disc using DNA oligonucleotide microarrays. Dev. 2003, 130: 659-670. 10.1242/dev.00293.
Article
CAS
Google Scholar
Hayes SA, Miller JM, Hoshizaki DK: Serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster. Dev. 2001, 128: 1193-1200.
CAS
Google Scholar
Shah AP, Nongthomba U, Kelly Tanaka KK, Denton MLB, Meadows SM, Bancroft N, Molina MR, Cripps RM: Cardiac remodeling in Drosophila arises from changes in actin gene expression and from a contribution of lymph gland-like cells to the heart musculature. Mech Dev. 2011, 128: 222-233. 10.1016/j.mod.2011.01.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bour BA, O'Brien MA, Lockwood WL, Goldstein ES, Bodmer R, Taghert PH, Abmayr SM, Nguyen HT: Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes Dev. 1995, 9: 730-741. 10.1101/gad.9.6.730.
Article
CAS
PubMed
Google Scholar
LaJeunesse D, Shearn A: E(z): a polycomb group gene or a trithorax group gene?. Dev. 1996, 122: 2189-2197.
CAS
Google Scholar
Pirrotta V, Bickel S, Mariani C: Developmental expression of the Drosophila zeste gene and localization of zeste protein on polytene chromosomes. Genes Dev. 1988, 2: 1839-1850. 10.1101/gad.2.12b.1839.
Article
CAS
PubMed
Google Scholar
Gomez-Skarmeta JL, Campuzano S, Modolell J: Half a century of neural prepatterning: the story of a few bristles and many genes. Nat Rev Neurosci. 2003, 4: 587-598.
Article
CAS
PubMed
Google Scholar
Schweizer L, Nellen D, Basler K: Requirement for Pangolin/dTCF in Drosophila Wingless signaling. Proc Natl Acad Sci USA. 2003, 100: 5846-5851. 10.1073/pnas.1037533100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zeng YA, Rahnama M, Wang S, Lee W, Verheyen EM: Inhibition of Drosophila Wg signaling involves competition between Mad and Armadillo/β-Catenin for dTcf binding. PLoS ONE. 2008, 3: e3893-10.1371/journal.pone.0003893.
Article
PubMed Central
PubMed
Google Scholar
Wang H-B, Iwanaga M, Kawasaki H: Activation of BMWCP10 promoter and regulation by BR-C Z2 in wing disc of Bombyx mori. Insect Biochem Mol Biol. 2009, 39: 615-623. 10.1016/j.ibmb.2009.06.008.
Article
PubMed
Google Scholar
Wang H-B, Nita M, Iwanaga M, Kawasaki H: βFTZ-F1 and Broad-Complex positively regulate the transcription of the wing cuticle protein gene, BMWCP5, in wing discs of Bombyx mori. Insect Biochem Mol Biol. 2009, 39: 624-633. 10.1016/j.ibmb.2009.06.007.
Article
CAS
PubMed
Google Scholar
Sandstrom DJ, Restifo LL: Epidermal tendon cells require Broad Complex function for correct attachment of the indirect flight muscles in Drosophila melanogaster. J Cell Sci. 1999, 112: 4051-4065.
CAS
PubMed
Google Scholar
Vigoreaux JO, Swank DM: The development of the flight and leg muscle. Comprehensive Molecular Insect Science. Volume 2. Edited by: Gilbert L, Iatrou K, Gill S. 2005, Oxford: Elsevier Press, 45-84.
Chapter
Google Scholar
Kozopas KM, Nusse R: Direct flight muscles in Drosophila develop from cells with characteristics of founders and depend on DWnt-2 for their correct patterning. Dev Biol. 2002, 243: 312-325. 10.1006/dbio.2002.0572.
Article
CAS
PubMed
Google Scholar
Santos AE, Bitondi MMG, Simões ZLP: Hormone-dependent protein patterns in integument and cuticular pigmentation in Apis mellifera during pharate adult development. J Insect Physiol. 2001, 47: 1275-1282. 10.1016/S0022-1910(01)00114-7.
Article
CAS
PubMed
Google Scholar
Zufelato MS, Bitondi MM, Simões ZL, Hartfelder K: The juvenile hormone analog pyriproxyfen affects ecdysteroid-dependent cuticle melanization and shifts the pupal ecdysteroid peak in the honey bee (Apis mellifera). Arthropod Struct Dev. 2000, 29: 111-119. 10.1016/S1467-8039(00)00023-2.
Article
CAS
PubMed
Google Scholar