Maston GA, Evans SK, Green MR: Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet. 2006, 7: 29-59. 10.1146/annurev.genom.7.080505.115623.
Article
CAS
PubMed
Google Scholar
Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE: High-resolution mapping and characterization of open chromatin across the genome. Cell. 2008, 132 (2): 311-322. 10.1016/j.cell.2007.12.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RD, Chenoweth JG, Tesar PJ, Furey TS: Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 2007, 3 (8): e136-10.1371/journal.pgen.0030136.
Article
PubMed Central
PubMed
Google Scholar
Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007, 447 (7146): 799-816. 10.1038/nature05874.
Article
CAS
PubMed
Google Scholar
Gross DS, Garrard WT: Nuclease hypersensitive sites in chromatin. Annu Rev Biochem. 1988, 57: 159-197. 10.1146/annurev.bi.57.070188.001111.
Article
CAS
PubMed
Google Scholar
Wu C: The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature. 1980, 286 (5776): 854-860. 10.1038/286854a0.
Article
CAS
PubMed
Google Scholar
Crawford GE, Davis S, Scacheri PC, Renaud G, Halawi MJ, Erdos MR, Green R, Meltzer PS, Wolfsberg TG, Collins FS: DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nat Methods. 2006, 3 (7): 503-509. 10.1038/nmeth888.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Graf S, Huss M, Keefe D: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011, 21 (10): 1757-1767. 10.1101/gr.121541.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shu W, Chen H, Bo X, Wang S: Genome-wide analysis of the relationships between DNaseI HS, histone modifications and gene expression reveals distinct modes of chromatin domains. Nucleic Acids Res. 2011, 39 (17): 7428-7443. 10.1093/nar/gkr443.
Article
PubMed Central
CAS
PubMed
Google Scholar
Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD, Holt A, Plajzer-Frick I, Afzal V, Rubin EM, Pennacchio LA: Ultraconservation identifies a small subset of extremely constrained developmental enhancers. Nat Genet. 2008, 40 (2): 158-160. 10.1038/ng.2007.55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Banerji J, Rusconi S, Schaffner W: Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell. 1981, 27 (2 Pt 1): 299-308.
Article
CAS
PubMed
Google Scholar
Jin F, Li Y, Ren B, Natarajan R: Enhancers: multi-dimensional signal integrators. Transcription. 2011, 2 (5): 226-230. 10.4161/trns.2.5.17712.
Article
PubMed Central
CAS
PubMed
Google Scholar
Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009, 457 (7231): 854-858. 10.1038/nature07730.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009, 459 (7243): 108-112. 10.1038/nature07829.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Q, Peterson KR, Fang X, Stamatoyannopoulos G: Locus control regions. Blood. 2002, 100 (9): 3077-3086. 10.1182/blood-2002-04-1104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tuan DY, Solomon WB, London IM, Lee DP: An erythroid-specific, developmental-stage-independent enhancer far upstream of the human "beta-like globin" genes. Proc Natl Acad Sci U S A. 1989, 86 (8): 2554-2558. 10.1073/pnas.86.8.2554.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suzuki M, Moriguchi T, Ohneda K, Yamamoto M: Differential contribution of the Gata1 gene hematopoietic enhancer to erythroid differentiation. Mol Cell Biol. 2009, 29 (5): 1163-1175. 10.1128/MCB.01572-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delabesse E, Ogilvy S, Chapman MA, Piltz SG, Gottgens B, Green AR: Transcriptional regulation of the SCL locus: identification of an enhancer that targets the primitive erythroid lineage in vivo. Mol Cell Biol. 2005, 25 (12): 5215-5225. 10.1128/MCB.25.12.5215-5225.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lacronique V, Lopez S, Miquerol L, Porteu A, Kahn A, Raymondjean M: Identification and functional characterization of an erythroid-specific enhancer in the L-type pyruvate kinase gene. J Biol Chem. 1995, 270 (25): 14989-14997. 10.1074/jbc.270.25.14989.
Article
CAS
PubMed
Google Scholar
Surinya KH, Cox TC, May BK: Identification and characterization of a conserved erythroid-specific enhancer located in intron 8 of the human 5-aminolevulinate synthase 2 gene. J Biol Chem. 1998, 273 (27): 16798-16809. 10.1074/jbc.273.27.16798.
Article
CAS
PubMed
Google Scholar
Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S: Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol. 2008, 40 (10): 1996-2001. 10.1016/j.biocel.2007.07.018.
Article
CAS
PubMed
Google Scholar
Schechter AN: Hemoglobin research and the origins of molecular medicine. Blood. 2008, 112 (10): 3927-3938. 10.1182/blood-2008-04-078188.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miller IJ, Bieker JJ: A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993, 13 (5): 2776-2786.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM: KLF1 Regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010, 42 (9): 742-744. 10.1038/ng.637.
Article
CAS
PubMed
Google Scholar
Marini MG, Porcu L, Asunis I, Loi MG, Ristaldi MS, Porcu S, Ikuta T, Cao A, Moi P: Regulation of the human HBA genes by KLF4 in erythroid cell lines. Br J Haematol. 2010, 149 (5): 748-758. 10.1111/j.1365-2141.2010.08130.x.
Article
CAS
PubMed
Google Scholar
Kalra IS, Alam MM, Choudhary PK, Pace BS: Krüppel-like factor 4 activates HBG gene expression in primary erythroid cells. Br J Haematol. 2011, 154 (2): 248-259. 10.1111/j.1365-2141.2011.08710.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Basu P, Morris PE, Haar JL, Wani MA, Lingrel JB, Gaensler KM, Lloyd JA: KLF2 Is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo. Blood. 2005, 106 (7): 2566-2571. 10.1182/blood-2005-02-0674.
Article
PubMed Central
CAS
PubMed
Google Scholar
Asano H, Li XS, Stamatoyannopoulos G: FKLF, a novel Krüppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol Cell Biol. 1999, 19 (5): 3571-3579.
Article
PubMed Central
CAS
PubMed
Google Scholar
Emery DW, Gavriilidis G, Asano H, Stamatoyannopoulos G: The transcription factor KLF11 can induce gamma-globin gene expression in the setting of in vivo adult erythropoiesis. J Cell Biochem. 2007, 100 (4): 1045-1055. 10.1002/jcb.21093.
Article
CAS
PubMed
Google Scholar
Asano H, Li XS, Stamatoyannopoulos G: FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood. 2000, 95 (11): 3578-3584.
CAS
PubMed
Google Scholar
Ma XY, Wang MJ, Qu XH, Xing GC, Zhu YP, He FC: Transcriptional regulation of gamma- and epsilon-globin genes by basic Krüppel-like factor. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003, 35 (3): 271-276.
CAS
Google Scholar
Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD, Lloyd JA: A functional screen for Krüppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells Mol Dis. 2005, 35 (2): 227-235. 10.1016/j.bcmd.2005.04.009.
Article
CAS
PubMed
Google Scholar
Matsumoto N, Kubo A, Liu H, Akita K, Laub F, Ramirez F, Keller G, Friedman SL: Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood. 2006, 107 (4): 1357-1365. 10.1182/blood-2005-05-1916.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huber TL, Perkins AC, Deconinck AE, Chan FY, Mead PE, Zon LI: Neptune, a Krüppel-like transcription factor that participates in primitive erythropoiesis in Xenopus. Curr Biol. 2001, 11 (18): 1456-1461. 10.1016/S0960-9822(01)00427-4.
Article
CAS
PubMed
Google Scholar
Perkins AC, Sharpe AH, Orkin SH: Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995, 375 (6529): 318-322. 10.1038/375318a0.
Article
CAS
PubMed
Google Scholar
Funnell AP, Norton LJ, Mak KS, Burdach J, Artuz CM, Twine NA, Wilkins MR, Power CA, Hung TT, Perdomo J: The CACCC-binding protein KLF3/BKLF represses a subset of KLF1/EKLF target genes and is required for proper erythroid maturation in vivo. Mol Cell Biol. 2012, 32 (16): 3281-3292. 10.1128/MCB.00173-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gordon AR, Outram SV, Keramatipour M, Goddard CA, Colledge WH, Metcalfe JC, Hager-Theodorides AL, Crompton T, Kemp PR: Splenomegaly and modified erythropoiesis in KLF13−/− mice. J Biol Chem. 2008, 283 (18): 11897-11904. 10.1074/jbc.M709569200.
Article
CAS
PubMed
Google Scholar
Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams DC, Basu M, Redmond LC, Lingrel JB, Haar JL, Lloyd JA: EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood. 2007, 110 (9): 3417-3425. 10.1182/blood-2006-11-057307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Funnell AP, Maloney CA, Thompson LJ, Keys J, Tallack M, Perkins AC, Crossley M: Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells. Mol Cell Biol. 2007, 27 (7): 2777-2790. 10.1128/MCB.01658-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen X, Reitman M, Bieker JJ: Chromatin structure and transcriptional control elements of the erythroid Krüppel-like factor (EKLF) gene. J Biol Chem. 1998, 273 (39): 25031-25040. 10.1074/jbc.273.39.25031.
Article
CAS
PubMed
Google Scholar
Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B: The accessible chromatin landscape of the human genome. Nature. 2012, 489 (7414): 75-82. 10.1038/nature11232.
Article
PubMed Central
CAS
PubMed
Google Scholar
Phillips JE, Corces VG: CTCF: master weaver of the genome. Cell. 2009, 137 (7): 1194-1211. 10.1016/j.cell.2009.06.001.
Article
PubMed Central
PubMed
Google Scholar
Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126 (4): 663-676. 10.1016/j.cell.2006.07.024.
Article
CAS
PubMed
Google Scholar
Segre JA, Bauer C, Fuchs E: Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 1999, 22 (4): 356-360. 10.1038/11926.
Article
CAS
PubMed
Google Scholar
Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH: A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol. 2008, 10 (3): 353-360. 10.1038/ncb1698.
Article
PubMed
Google Scholar
Lee EY, Ji H, Ouyang Z, Zhou B, Ma W, Vokes SA, McMahon AP, Wong WH, Scott MP: Hedgehog pathway-regulated gene networks in cerebellum development and tumorigenesis. Proc Natl Acad Sci. 2010, 107 (21): 9736-10.1073/pnas.1004602107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Petrykowska HM, Vockley CM, Elnitski L: Detection and characterization of silencers and enhancer-blockers in the greater CFTR locus. Genome Res. 2008, 18 (8): 1238-1246. 10.1101/gr.073817.107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E, Taipale J: Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell. 2006, 124 (1): 47-59. 10.1016/j.cell.2005.10.042.
Article
CAS
PubMed
Google Scholar
Gehrau RC, D’Astolfo DS, Prieto C, Bocco JL, Koritschoner NP: Genomic organization and functional analysis of the gene encoding the Krüppel-like transcription factor KLF6. Biochim Biophys Acta. 2005, 1730 (2): 137-146. 10.1016/j.bbaexp.2005.06.006.
Article
CAS
PubMed
Google Scholar
Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD: FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 2007, 17 (6): 877-885. 10.1101/gr.5533506.
Article
PubMed Central
CAS
PubMed
Google Scholar
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005, 15 (8): 1034-1050. 10.1101/gr.3715005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007, 448 (7153): 553-560. 10.1038/nature06008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Euskirchen GM, Rozowsky JS, Wei CL, Lee WH, Zhang ZD, Hartman S, Emanuelsson O, Stolc V, Weissman S, Gerstein MB: Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res. 2007, 17 (6): 898-909. 10.1101/gr.5583007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009, 37 (Web Server issue): W202-W208.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M: FoxA1 Translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 2008, 132 (6): 958-970. 10.1016/j.cell.2008.01.018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kadonaga JT: Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell. 2004, 116 (2): 247-257. 10.1016/S0092-8674(03)01078-X.
Article
CAS
PubMed
Google Scholar
Blackwood EM, Kadonaga JT: Going the distance: a current view of enhancer action. Science. 1998, 281 (5373): 60-63.
Article
CAS
PubMed
Google Scholar
Carter D, Chakalova L, Osborne CS, Dai YF, Fraser P: Long-range chromatin regulatory interactions in vivo. Nat Genet. 2002, 32 (4): 623-626. 10.1038/ng1051.
Article
CAS
PubMed
Google Scholar
Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007, 39 (3): 311-318. 10.1038/ng1966.
Article
CAS
PubMed
Google Scholar
Hesselberth JR, Chen X, Zhang Z, Sabo PJ, Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS: Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat Methods. 2009, 6 (4): 283-289. 10.1038/nmeth.1313.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martin KM, Metcalfe JC, Kemp PR: Expression of Klf9 and Klf13 in mouse development. Mech Dev. 2001, 103 (1–2): 149-151.
Article
CAS
PubMed
Google Scholar
Morita M, Kobayashi A, Yamashita T, Shimanuki T, Nakajima O, Takahashi S, Ikegami S, Inokuchi K, Yamashita K, Yamamoto M: Functional analysis of basic transcription element binding protein by gene targeting technology. Mol Cell Biol. 2003, 23 (7): 2489-2500. 10.1128/MCB.23.7.2489-2500.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simmen FA, Xiao R, Velarde MC, Nicholson RD, Bowman MT, Fujii-Kuriyama Y, Oh SP, Simmen RC: Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9. Am J Physiol Gastrointest Liver Physiol. 2007, 292 (6): G1757-1769. 10.1152/ajpgi.00013.2007.
Article
CAS
PubMed
Google Scholar
Simmen RC, Eason RR, McQuown JR, Linz AL, Kang TJ, Chatman L, Till SR, Fujii-Kuriyama Y, Simmen FA, Oh SP: Subfertility, uterine hypoplasia, and partial progesterone resistance in mice lacking the Kruppel-like factor 9/basic transcription element-binding protein-1 (Bteb1) gene. J Biol Chem. 2004, 279 (28): 29286-29294. 10.1074/jbc.M403139200.
Article
CAS
PubMed
Google Scholar
John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA: Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011, 43 (3): 264-268. 10.1038/ng.759.
Article
CAS
PubMed
Google Scholar
Andrews NC, Faller DV: A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 1991, 19 (9): 2499-10.1093/nar/19.9.2499.
Article
PubMed Central
CAS
PubMed
Google Scholar