Gillespie J: The Causes of Molecular Evolution. 1991, Oxford: Oxford University Press
Google Scholar
Li W-H: Molecular Evolution. 1997, Sunderland, Massachussets: Sinauer Associates
Google Scholar
Kimura M: Evolutionary rate at the molecular level. Nature. 1968, 217: 624-626.
Article
CAS
PubMed
Google Scholar
King JL, Jukes TH: Non-Darwinian evolution. Science. 1969, 164: 788-798.
Article
CAS
PubMed
Google Scholar
Fay JC: Weighing the evidence for adaptation at the molecular level. Trends Genet. 2011, 27: 343-349.
Article
CAS
PubMed Central
PubMed
Google Scholar
McDonald JH, Kreitman M: Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991, 351: 652-654.
Article
CAS
PubMed
Google Scholar
Hudson RR, Kreitman M, Aguadé M: A test of neutral molecular evolution based on nucleotide data. Genetics. 1987, 116: 153-159.
CAS
PubMed Central
PubMed
Google Scholar
Kreitman ME, Aguadé M: Excess polymorphism at the Adh locus in Drosophila melanogaster. Genetics. 1986, 114: 93-110.
CAS
PubMed Central
PubMed
Google Scholar
Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA, Fang S, Wang H-Y, Hudson RR, Nielsen R, Chen Z, Wu C-I: Adaptive genic evolution in the Drosophila genomes. Proc Natl Acad Sci U S A. 2007, 104: 2271-2276.
Article
PubMed Central
PubMed
Google Scholar
Rand DM, Kann LM: Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol. 1996, 13: 735-748.
Article
CAS
PubMed
Google Scholar
Stoletzki N, Eyre-Walker A: Estimation of the neutrality index. Mol Biol Evol. 2011, 28: 63-70.
Article
CAS
PubMed
Google Scholar
Charlesworth B: The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994, 63: 213-227.
Article
CAS
PubMed
Google Scholar
Fay JC, Wyckoff GJ, Wu CI: Positive and negative selection on the human genome. Genetics. 2001, 158: 1227-1234.
CAS
PubMed Central
PubMed
Google Scholar
Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR, White TJ, Nielsen R, Clark AG, Bustamante CD: Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet. 2008, 4: e1000083-
Article
PubMed Central
PubMed
Google Scholar
Zhang L, Li W-H: Human SNPs reveal no evidence of frequent positive selection. Mol Biol Evol. 2005, 22: 2504-2507.
Article
CAS
PubMed
Google Scholar
Gojobori J, Tang H, Akey JM, Wu C-I: Adaptive evolution in humans revealed by the negative correlation between the polymorphism and fixation phases of evolution. Proc Natl Acad Sci U S A. 2007, 104: 3907-3912.
Article
CAS
PubMed Central
PubMed
Google Scholar
Eyre-Walker A, Keightley PD: Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol Biol Evol. 2009, 26: 2097-2108.
Article
CAS
PubMed
Google Scholar
Eyre-Walker A: Changing effective population size and the McDonald-Kreitman test. Genetics. 2002, 162: 2017-2024.
PubMed Central
PubMed
Google Scholar
Messer PW, Petrov DA: Frequent adaptation and the McDonald-Kreitman test. Proc Natl Acad Sci U S A. 2013, 110: 8615-8620.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kawahara Y, Imanishi T: A genome-wide survey of changes in protein evolutionary rates across four closely related species of Saccharomyces sensu stricto group. BMC Evol Biol. 2007, 7: 9-
PubMed Central
PubMed
Google Scholar
Shapiro BJ, Alm EJ: Comparing patterns of natural selection across species using selective signatures. PLoS Genet. 2008, 4: e23-
Article
PubMed Central
PubMed
Google Scholar
Toll-Riera M, Laurie S, Albà MM: Lineage-specific variation in intensity of natural selection in mammals. Mol Biol Evol. 2011, 28: 383-398.
Article
CAS
PubMed
Google Scholar
Arbiza L, Dopazo J, Dopazo H: Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput Biol. 2006, 2: e38-
Article
PubMed Central
PubMed
Google Scholar
Ayala FJ: Neutralism and selectionism: the molecular clock. Gene. 2000, 261: 27-33.
Article
CAS
PubMed
Google Scholar
Bedford T, Hartl DL: Overdispersion of the molecular clock: temporal variation of gene-specific substitution rates in Drosophila. Mol Biol Evol. 2008, 25: 1631-1638.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005, 22: 2472-2479.
Article
CAS
PubMed
Google Scholar
Bakewell MA, Shi P, Zhang J: More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci U S A. 2007, 104: 7489-7494.
Article
CAS
PubMed Central
PubMed
Google Scholar
Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M: Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science. 2003, 302: 1960-1963.
Article
CAS
PubMed
Google Scholar
Nickel GC, Tefft DL, Goglin K, Adams MD: An empirical test for branch-specific positive selection. Genetics. 2008, 179: 2183-2193.
Article
PubMed Central
PubMed
Google Scholar
Wong WSW, Yang Z, Goldman N, Nielsen R: Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics. 2004, 168: 1041-1051.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gharib WH, Robinson-Rechavi M: The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC. Mol Biol Evol. 2013, 30: 1675-1686.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nozawa M, Suzuki Y, Nei M: Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. Proc Natl Acad Sci U S A. 2009, 106: 6700-6705.
Article
CAS
PubMed Central
PubMed
Google Scholar
O’Bleness M, Searles VB, Varki A, Gagneux P, Sikela JM: Evolution of genetic and genomic features unique to the human lineage. Nat Rev Genet. 2012, 13: 853-866.
Article
PubMed Central
PubMed
Google Scholar
Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, Civello D, Adams MD, Cargill M, Clark AG: Natural selection on protein-coding genes in the human genome. Nature. 2005, 437: 1153-1157.
Article
CAS
PubMed
Google Scholar
Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, Sninsky J, Adams MD, Cargill M: A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 2005, 3: e170-
Article
PubMed Central
PubMed
Google Scholar
Moreno-Estrada A, Tang K, Sikora M, Marquès-Bonet T, Casals F, Navarro A, Calafell F, Bertranpetit J, Stoneking M, Bosch E: Interrogating 11 fast-evolving genes for signatures of recent positive selection in worldwide human populations. Mol Biol Evol. 2009, 26: 2285-2297.
Article
CAS
PubMed
Google Scholar
Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S, Lahn BT: Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet. 2004, 13: 489-494.
Article
CAS
PubMed
Google Scholar
Montgomery SH, Capellini I, Venditti C, Barton RA, Mundy NI: Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol Biol Evol. 2011, 28: 625-638.
Article
CAS
PubMed
Google Scholar
Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 2009, 19: 327-335.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24: 1586-1591.
Article
CAS
PubMed
Google Scholar
Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA: An integrated map of genetic variation from 1,092 human genomes. Nature. 2012, 491: 56-65.
Article
PubMed
Google Scholar
Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six Mammalian genomes. PLoS Genet. 2008, 4: e1000144-
Article
PubMed Central
PubMed
Google Scholar
Moretti S, Laurenczy B, Gharib WH, Castella B, Kuzniar A, Schabauer H, Studer RA, Valle M, Salamin N, Stockinger H, Robinson-Rechavi M: Selectome update: quality control and computational improvements to a database of positive selection. Nucleic Acids Res. 2013, 42: D917-D921.
Article
PubMed Central
PubMed
Google Scholar
Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG: More than just orphans: are taxonomically-restricted genes important in evolution?. Trends Genet. 2009, 25: 404-413.
Article
CAS
PubMed
Google Scholar
Domazet-Loso T, Tautz D: An evolutionary analysis of orphan genes in Drosophila. Genome Res. 2003, 13: 2213-2219.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cai JJ, Woo PCY, Lau SKP, Smith DK, Yuen K-Y: Accelerated evolutionary rate may be responsible for the emergence of lineage-specific genes in ascomycota. J Mol Evol. 2006, 63: 1-11.
Article
CAS
PubMed
Google Scholar
Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill X, Albà MM: Origin of primate orphan genes: a comparative genomics approach. Mol Biol Evol. 2009, 26: 603-612.
Article
CAS
PubMed
Google Scholar
Liu J, Zhang Y, Lei X, Zhang Z: Natural selection of protein structural and functional properties: a single nucleotide polymorphism perspective. Genome Biol. 2008, 9: R69-
Article
PubMed Central
PubMed
Google Scholar
Cai JJ, Petrov DA: Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol Evol. 2010, 2: 393-409.
Article
PubMed Central
PubMed
Google Scholar
Neme R, Tautz D: Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 2013, 14: 117-
Article
CAS
PubMed Central
PubMed
Google Scholar
Itoh S, Fujimori KE, Uyeda A, Matsuda A, Kobayashi H, Shinomiya K, Tanaka J, Taguchi T: Long-term effects of muscle-derived protein with molecular mass of 77 kDa (MDP77) on nerve regeneration. J Neurosci Res. 2005, 81: 730-738.
Article
CAS
PubMed
Google Scholar
Cai Q, Pan P-Y, Sheng Z-H: Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J Neurosci. 2007, 27: 7284-7296.
Article
CAS
PubMed
Google Scholar
Sugimoto M, Inoko A, Shiromizu T, Nakayama M, Zou P, Yonemura S, Hayashi Y, Izawa I, Sasoh M, Uji Y, Kaibuchi K, Kiyono T, Inagaki M: The keratin-binding protein Albatross regulates polarization of epithelial cells. J Cell Biol. 2008, 183: 19-28.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ishikawa S, Kobayashi I, Hamada J, Tada M, Hirai A, Furuuchi K, Takahashi Y, Ba Y, Moriuchi T: Interaction of MCC2, a novel homologue of MCC tumor suppressor, with PDZ-domain Protein AIE-75. Gene. 2001, 267: 101-110.
Article
CAS
PubMed
Google Scholar
Stifani S, Blaumueller CM, Redhead NJ, Hill RE, Artavanis-Tsakonas S: Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins. Nat Genet. 1992, 2: 343-
Article
CAS
PubMed
Google Scholar
Charlesworth J, Eyre-Walker A: The McDonald-Kreitman test and slightly deleterious mutations. Mol Biol Evol. 2008, 25: 1007-1015.
Article
CAS
PubMed
Google Scholar
Gossmann TI, Keightley PD, Eyre-Walker A: The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol Evol. 2012, 4: 658-667.
Article
PubMed Central
PubMed
Google Scholar
Subramanian S: Quantifying harmful mutations in human populations. Eur J Hum Genet. 2012, 20: 1320-1322.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mallick S, Gnerre S, Muller P, Reich D: The difficulty of avoiding false positives in genome scans for natural selection. Genome Res. 2009, 19: 922-933.
Article
CAS
PubMed Central
PubMed
Google Scholar
Markova-Raina P, Petrov D: High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res. 2011, 21: 863-874.
Article
CAS
PubMed Central
PubMed
Google Scholar
Villanueva-Cañas JL, Laurie S, Albà MM: Improving genome-wide scans of positive selection by using protein isoforms of similar length. Genome Biol Evol. 2013, 5: 457-467.
Article
PubMed Central
PubMed
Google Scholar
Dorus S, Vallender EJ, Evans PD, Anderson JR, Gilbert SL, Mahowald M, Wyckoff GJ, Malcom CM, Lahn BT: Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell. 2004, 119: 1027-1040.
Article
CAS
PubMed
Google Scholar
Löytynoja A, Goldman N: Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008, 320: 1632-1635.
Article
PubMed
Google Scholar
Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, Raney B, Burhans R, King DC, Baertsch R, Blankenberg D, Kosakovsky Pond SL, Nekrutenko A, Giardine B, Harris RS, Tyekucheva S, Diekhans M, Pringle TH, Murphy WJ, Lesk A, Weinstock GM, Lindblad-Toh K, Gibbs RA, Lander ES, Siepel A, Haussler D, Kent WJ: 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Res. 2007, 17: 1797-1808.
Article
CAS
PubMed Central
PubMed
Google Scholar
Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006, 34 (Web Server issue): W609–12-
PubMed
Google Scholar
Guberman JM, Ai J, Arnaiz O, Baran J, Blake A, Baldock R, Chelala C, Croft D, Cros A, Cutts RJ, Di Génova A, Forbes S, Fujisawa T, Gadaleta E, Goodstein DM, Gundem G, Haggarty B, Haider S, Hall M, Harris T, Haw R, Hu S, Hubbard S, Hsu J, Iyer V, Jones P, Katayama T, Kinsella R, Kong L, Lawson D, et al: BioMart Central Portal: an open database network for the biological community. Database (Oxford). 2011, 2011: bar041-
Article
Google Scholar
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425.
CAS
PubMed
Google Scholar
Fletcher W, Yang Z: The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol Biol Evol. 2010, 27: 2257-2267.
Article
CAS
PubMed
Google Scholar
Jordan G, Goldman N: The effects of alignment error and alignment filtering on the sitewise detection of positive selection. Mol Biol Evol. 2012, 29: 1125-1139.
Article
CAS
PubMed
Google Scholar