Greaves LC, Reeve AK, Taylor RW, Turnbull DM: Mitochondrial DNA and disease. J Pathol. 2011, 226: 274-286.
Article
PubMed
Google Scholar
Schon EA, DiMauro S, Hirano M: Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet. 2012, 13: 878-890.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM: Prevalence of mitochondrial DNA disease in adults. Ann Neurol. 2008, 63: 35-39.
Article
CAS
PubMed
Google Scholar
Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF: The epidemiology of mitochondrial disorders–past, present and future. Biochim Biophys Acta. 2004, 1659: 115-120.
Article
CAS
PubMed
Google Scholar
Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM: The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol. 2000, 48: 188-193.
Article
CAS
PubMed
Google Scholar
Hudson G, Deschauer M, Taylor RW, Hanna MG, Fialho D, Schaefer AM, He L-P, Blakely E, Turnbull DM, Chinnery PF: POLG1, C10ORF2, and ANT1 mutations are uncommon in sporadic progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Neurology. 2006, 66: 1439-1441.
Article
CAS
PubMed
Google Scholar
Spinazzola A, Zeviani M: Disorders from perturbations of nuclear-mitochondrial intergenomic cross-talk. J Intern Med. 2009, 265: 174-192.
Article
CAS
PubMed
Google Scholar
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006, 38: 515-517.
Article
CAS
PubMed
Google Scholar
Linnane AW, Marzuki S, Ozawa T, Tanaka M: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989, 1: 642-645.
Article
CAS
PubMed
Google Scholar
Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM: Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol A Biol Sci Med Sci. 2007, 62: 235-245.
Article
PubMed Central
PubMed
Google Scholar
Kraytsberg Y, Simon DK, Turnbull DM, Khrapko K: Do mtDNA deletions drive premature aging in mtDNA mutator mice?. Aging Cell. 2009, 8: 502-506.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S: A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science. 1989, 244: 346-349.
Article
CAS
PubMed
Google Scholar
Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, Fabrizi GM, Koga Y, DiMauro S, Schon EA: Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res. 1990, 18: 561-567.
Article
CAS
PubMed Central
PubMed
Google Scholar
Samuels DC, Schon EA, Chinnery PF: Two direct repeats cause most human mtDNA deletions. Trends Genet. 2004, 20: 393-398.
Article
CAS
PubMed
Google Scholar
Lakshmanan LN, Gruber J, Halliwell B, Gunawan R: Role of direct repeat and stem-loop motifs in mtDNA deletions: cause or coincidence?. PLoS One. 2012, 7: e35271-
Article
CAS
PubMed Central
PubMed
Google Scholar
Hou JH, Wei YH: The unusual structures of the hot-regions flanking large-scale deletions in human mitochondrial DNA. Biochem J. 1996, 318 (Pt 3): 1065-1070.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S: An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature. 1989, 339: 309-311.
Article
CAS
PubMed
Google Scholar
Damas J, Carneiro J, Gonçalves J, Stewart JB, Samuels DC, Amorim A, Pereira F: Mitochondrial DNA deletions are associated with non-B DNA conformations. Nucleic Acids Res. 2012, 40: 7606-7621.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bochman ML, Paeschke K, Zakian VA: DNA secondary structures:stability and function ofG-quadruplex structures. Nat Rev Genet. 2012, 13: 770-780.
Article
CAS
PubMed Central
PubMed
Google Scholar
Cao K, Ryvkin P, Johnson FB: Computational detection and analysis of sequences with duplex-derived interstrand G-quadruplex forming potential. Methods. 2012, 57: 3-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou M-P, Foiani M, Nicolas A: G-quadruplex-induced instability during leading-strand replication. EMBO J. 2011, 30: 4033-4046.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ribeyre C, Lopes J, Boulé J-B, Piazza A, Guédin A, Zakian VA, Mergny J-L, Nicolas A: The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009, 5: e1000475-
Article
PubMed Central
PubMed
Google Scholar
De S, Michor F: DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol. 2011, 18: 950-955.
Article
CAS
PubMed Central
PubMed
Google Scholar
Capra JA, Paeschke K, Singh M, Zakian VA: G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLoS Comput Biol. 2010, 6: e1000861-
Article
PubMed Central
PubMed
Google Scholar
Rawal P, Kummarasetti VBR, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S: Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 2006, 16: 644-655.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wanrooij PH, Uhler JP, Simonsson T, Falkenberg M, Gustafsson CM: G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci U S A. 2010, 107: 16072-16077.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee DY, Clayton DA: Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem. 1996, 271: 24262-24269.
Article
CAS
PubMed
Google Scholar
Wanrooij PH, Uhler JP, Shi Y, Westerlund F, Falkenberg M, Gustafsson CM: A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res. 2012, 40: 10334-10344.
Article
CAS
PubMed Central
PubMed
Google Scholar
Albring M, Attardi G: Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci U S A. 1977, 74: 1348-1352.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF: Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A. 2012, 109: 6136-6141.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chang DD, Clayton DA: Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci U S A. 1985, 82: 351-355.
Article
CAS
PubMed Central
PubMed
Google Scholar
Oliveira PH, da Silva CL, Cabral JMS: An appraisal of human mitochondrial DNA instability: new insights into the role of non-canonical DNA structures and sequence motifs. PLoS One. 2013, 8: e59907-
Article
CAS
PubMed Central
PubMed
Google Scholar
Hazel P, Huppert J, Balasubramanian S, Neidle S: Loop-length-dependent folding of G-quadruplexes. J Am Chem Soc. 2004, 126: 16405-16415.
Article
CAS
PubMed
Google Scholar
Petraccone L, Erra E, Duro I, Esposito V, Randazzo A, Mayol L, Mattia CA, Barone G, Giancola C: Relative stability of quadruplexes containing different number of G-tetrads. Nucleosides Nucleotides Nucleic Acids. 2005, 24: 757-760.
Article
CAS
PubMed
Google Scholar
Risitano A, Fox KR: Influence of loop size on the stability of intramolecular DNA quadruplexes. Nucleic Acids Res. 2004, 32: 2598-2606.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kikin O, D’antonio L, Bagga PS: QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006, 34 (Web Server issue): W676-W682.
Article
CAS
PubMed Central
PubMed
Google Scholar
Markham NR, Zuker M: UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 2008, 453: 3-31.
Article
CAS
PubMed
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res. 2009, 19: 1639-1645.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bhattacharjee AJ, Ahluwalia K, Taylor S, Jin O, Nicoludis JM, Buscaglia R, Brad Chaires J, Kornfilt DJP, Marquardt DGS, Yatsunyk LA: Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin. Biochimie. 2011, 93: 1297-1309.
Article
CAS
PubMed
Google Scholar
Smith JS, Chen Q, Yatsunyk LA, Nicoludis JM, Garcia MS, Kranaster R, Balasubramanian S, Monchaud D, Teulade-Fichou M-P, Abramowitz L, Schultz DC, Johnson FB: Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat Struct Mol Biol. 2011, 18: 478-485.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huppert JL: Hunting G-quadruplexes. Biochimie. 2008, 90: 1140-1148.
Article
CAS
PubMed
Google Scholar
Yang J-N, Seluanov A, Gorbunova V: Mitochondrial inverted repeats strongly correlate with lifespan: mtDNA inversions and aging. PLoS One. 2013, 8: e73318-
Article
CAS
PubMed Central
PubMed
Google Scholar
Moraes CT, DiMauro S, Zeviani M, Lombes A, Shanske S, Miranda AF, Nakase H, Bonilla E, Werneck LC, Servidei S: Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Medi. 1989, 320: 1293-1299.
Article
CAS
Google Scholar
Guo X, Popadin KY, Markuzon N, Orlov YL, Kraytsberg Y, Krishnan KJ, Zsurka G, Turnbull DM, Kunz WS, Khrapko K: Repeats, longevity and the sources of mtDNA deletions: evidence from ‘deletional spectra’. Trends Genet. 2010, 26: 340-343.
Article
PubMed Central
PubMed
Google Scholar
Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F: Mitochondrial DNA rearrangements in health and disease–a comprehensive study. Hum Mutat. 2014, 35: 1-14.
Article
CAS
PubMed
Google Scholar
Myers S, Freeman C, Auton A, Donnelly P, McVean G: A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet. 2008, 40: 1124-1129.
Article
CAS
PubMed
Google Scholar
Mergny J-L, Li J, Lacroix L, Amrane S, Chaires JB: Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res. 2005, 33: e138-
Article
PubMed Central
PubMed
Google Scholar
Paeschke K, Capra JA, Zakian VA: DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. 2011, 145: 678-691.
Article
CAS
PubMed Central
PubMed
Google Scholar
Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA: Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature. 2013, 497: 458-462.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kolesar JE, Wang CY, Taguchi YV, Chou S-H, Kaufman BA: Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Res. 2013, 41: e58-e58.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pohjoismäki JLO, Holmes JB, Wood SR, Yang M-Y, Yasukawa T, Reyes A, Bailey LJ, Cluett TJ, Goffart S, Rigby RE, Jackson AP, Spelbrink JN, Griffith JD, Crouch RJ, Jacobs HT, Holt IJ: Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid. J Mol Biol. 2010, 397: 1144-1155.
Article
PubMed Central
PubMed
Google Scholar
Van Tuyle GC, Pavco PA: The rat liver mitochondrial DNA-protein complex: displaced single strands of replicative intermediates are protein coated. J Cell Biol. 1985, 100: 251-257.
Article
CAS
PubMed
Google Scholar
Kim N, Jinks-Robertson S: Transcription as a source of genome instability. Nat Rev Genet. 2012, 13: 204-214.
CAS
PubMed Central
PubMed
Google Scholar
Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, Taylor RW, Wanrooij S, Spelbrink JN, Lightowlers RN, Turnbull DM: What causes mitochondrial DNA deletions in human cells?. Nat Genet. 2008, 40: 275-279.
Article
CAS
PubMed
Google Scholar
Srivastava S, Moraes CT: Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet. 2005, 14: 893-902.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fukui H, Moraes CT: Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet. 2009, 18: 1028-1036.
Article
CAS
PubMed Central
PubMed
Google Scholar
Garone C, Rubio JC, Calvo SE, Naini A, Tanji K, DiMauro S, Mootha VK, Hirano M: MPV17 mutations causing adult-onset multisystemic disorder with multiple mitochondrial DNA DeletionsMPV17 mutations. Arch Neurol. 2012, 69: 1648-1651.
Article
PubMed Central
PubMed
Google Scholar
Copeland WC: Defects in mitochondrial DNA replication and human disease. Crit Rev Biochem Mol Biol. 2012, 47: 64-74.
Article
CAS
PubMed Central
PubMed
Google Scholar
Copeland WC: Inherited mitochondrial diseases of DNA replication. Annu Rev Med. 2008, 59: 131-146.
Article
CAS
PubMed Central
PubMed
Google Scholar
Douarre C, Mergui X, Sidibe A, Gomez D, Alberti P, Mailliet P, Trentesaux C, Riou J-F: DNA damage signaling induced by the G-quadruplex ligand 12459 is modulated by PPM1D/WIP1 phosphatase. Nucleic Acids Res. 2013, 41: 3588-3599.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W: FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J Cell Biol. 2013, 201: 33-48.
Article
CAS
PubMed Central
PubMed
Google Scholar
Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, Wanrooij S, Garrido N, Comi G, Morandi L, Santoro L, Toscano A, Fabrizi GM, Somer H, Croxen R, Beeson D, Poulton J, Suomalainen A, Jacobs HT, Zeviani M, Larsson C: Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet. 2001, 28: 223-231.
Article
CAS
PubMed
Google Scholar
Jemt E, Farge G, Backstrom S, Holmlund T, Gustafsson CM, Falkenberg M: The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis. Nucleic Acids Res. 2011, 39: 9238-9249.
Article
CAS
PubMed Central
PubMed
Google Scholar
Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P, Ramamoorthy M, Wang ZM, Singh DK, Akbari M, Kasiviswanathan R, Copeland WC, Bohr VA: RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell. 2012, 11: 456-466.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kazak L, Reyes A, Duncan AL, Rorbach J, Wood SR, Brea-Calvo G, Gammage PA, Robinson AJ, Minczuk M, Holt IJ: Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Res. 2013, 41: 2354-2369.
Article
CAS
PubMed Central
PubMed
Google Scholar
George T, Wen Q, Griffiths R, Ganesh A, Meuth M, Sanders CM: Human Pif1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks. Nucleic Acids Res. 2009, 37: 6491-6502.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sanders CM: Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J. 2010, 430: 119-128.
Article
CAS
PubMed
Google Scholar