Skip to content

Advertisement

You're viewing the new version of our site. Please leave us feedback.

Learn more

BMC Genomics

Open Access

A comparison of gene transcription profiles of domesticated and wild Atlantic salmon (Salmo salar L.) at early life stages, reared under controlled conditions

  • Beatrix Bicskei1Email author,
  • James E Bron1,
  • Kevin A Glover2 and
  • John B Taggart1
BMC Genomics201415:884

https://doi.org/10.1186/1471-2164-15-884

Received: 17 May 2014

Accepted: 29 September 2014

Published: 9 October 2014

Abstract

Background

Atlantic salmon have been subject to domestication for approximately ten generations, beginning in the early 1970s. This process of artificial selection will have created various genetic differences between wild and farmed stocks. Each year, hundreds of thousands of farmed fish escape into the wild. These escapees may interbreed with wild conspecifics raising concerns for both the fish-farming industry and fisheries managers. Thus, a better understanding of the interactions between domesticated and wild salmon is essential to the continued sustainability of the aquaculture industry and to the maintenance of healthy wild stocks.

Results

We compared the transcriptomes of a wild Norwegian Atlantic salmon population (Figgjo) and a Norwegian farmed strain (Mowi) at two life stages: yolk sac fry and post first-feeding fry. The analysis employed 44 k oligo-microarrays to analyse gene expression of 36 farmed, wild and hybrid (farmed dam x wild sire) individuals reared under identical hatchery conditions. Although some of the transcriptional differences detected overlapped between sampling points, our results highlighted the importance of studying various life stages. Compared to the wild population, the Mowi strain displayed up-regulation in mRNA translation-related and down regulation in nervous and immune system -related pathways in the sac fry, whereas up-regulation of digestive and endocrine activities, carbohydrate, energy, amino acid and lipid metabolism and down-regulation of environmental information processing and immune system pathways were evident in the feeding fry. Differentially regulated pathways that were common among life stages generally belonged to environmental information processing and immune system functional groups. In addition, we found indications of strong maternal effects, reinforcing the importance of including reciprocal hybrids in the analysis.

Conclusions

In agreement with previous studies we showed that domestication has caused changes in the transcriptome of wild Atlantic salmon and that many of the affected pathways are life-stage specific We highlighted the importance of reciprocal hybrids to the deconvolution of maternal/paternal effects and our data support the view that the genetic architecture of the strains studied highly influences the genes differentially expressed between wild and domesticated fish.

Keywords

Domestication selectionMicroarrayAtlantic salmonGene expressionFarm escapeesMaternal effects

Background

Commercial Atlantic salmon (Salmo salar L.) aquaculture was first initiated in Norway during the late 1960s, and has grown rapidly to become one of the most economically significant global aquaculture industries (FAO 2013). Current world-production is around 2 million tonnes, with Norway, Chile and Scotland representing the three largest producers. While this industry has been highly successful in terms of expanding production and reaching new consumer markets, this has not been achieved without increasing the potential for environmental impact. The question of environmental impacts following the escape of farmed salmon, and in particular the potential for genetic interactions with wild conspecifics, continue to provide key themes for scientific debate and public controversy [13].

Thousands of farmed salmon are reported to escape from aquaculture installations on a regular basis and, due to the probability of underreporting [46], it has been estimated that the true number of escapees is likely to be significantly higher [7]. Depending upon several factors such as fish age and time of escapement [8, 9], some farmed salmon manage to survive in the wild and enter freshwater where native salmon populations reproduce. Farmed escapees have been observed on the spawning grounds of native populations in Norway [10, 11], the United Kingdom and Ireland [1214], Iceland [15] Western Canada [16] and eastern North America [17]. While the reproductive success of farmed escapees is limited compared to wild salmon [18, 19], farmed salmon have been observed spawning in the wild [7, 12, 20], and genetic changes in native populations as a result of successful reproduction have been detected [2124].

A recent study of historical and contemporary samples from 20 Norwegian salmon rivers estimated cumulative introgression of farmed escaped salmon in native populations [25]. Using a combination of single nucleotide polymorphisms (SNPs) and approximate Bayesian computation, these authors estimated introgression of farmed salmon reached nearly 50% in some rivers. This level of genetic introgression is of significant concern for two main reasons. First, wild Atlantic salmon populations are often genetically differentiated from one another and may be adapted to their specific rivers [2629]. Thus, invasion of a non-local fish may disrupt local adaptation. Second, farmed Atlantic salmon have been subject to selection for a range of traits since breeding programs wer’s [3032]. As a result, farmed salmon display a range of genetic differences to wild Atlantic salmon in a number of measured traits; for example, greatly increased growth rates under farming conditions [3336], reduced predator awareness [37], reduced genetic diversity in highly polymorphic genetic markers at the population level [38, 39], and altered gene-transcription patterns [40, 41]. Furthermore, studies conducted in the wild have demonstrated that the offspring of farmed salmon display reduced survival compared to the offspring of wild salmon [19, 4244], an observation consistent with the reported lower fitness of the offspring of hatchery fish in the wild [45, 46]. Studies of the genetic differences between wild and domesticated salmon therefore represent an important contribution towards gaining understanding of the likely evolutionary consequences of interbreeding between escaped salmon and their wild conspecifics.

Forty years ago King and Wilson proposed that gene regulation governs evolution of anatomy, physiology and behaviour [47, 48] and the development of broad-spectrum/high-throughput genomic approaches allows the theory to be tested. DNA microarrays, for example, are commonly used to simultaneously measure the mRNA expression levels of thousands of transcripts and have been available for salmonids since 2004 [49, 50]. As well as being employed to study genome-wide transcript expression, microarray experiments have been tailored to explore aspects of evolutionary processes, such as domestication in Atlantic salmon. In a series of microarray studies, Roberge and colleagues [40, 41] suggested that five to seven generations of selection for domestication may be sufficient to induce heritable alterations in transcription levels compared to wild populations. Of the differentially expressed genes that they detected, 16% displayed parallel changes among the strains, providing further evidence that artificial selection drives evolutionary changes at the gene transcription level [40]. Furthermore the authors suggested that, since most (82%) of the differentially expressed genes exhibited non-additive inheritance patterns, the consequences of introgression would likely to be difficult to predict [41].

In the present study, microarray analysis was used to explore potential gene transcription/regulatory consequences of hybridisation between wild and domesticated salmon. In order to investigate genome wide transcript expression differences between wild and domesticated stocks, mRNA levels were compared for yolk-sac and externally feeding fry originating from wild (Figgjo), domesticated (Mowi) and hybrid (Mowi ♀ x Figgjo ♂) populations reared under common conditions. Early life-history stages were focused upon, primarily to minimise transcriptional differences between the strains resulting solely from divergent inter-strain growth rates (up to three fold difference by four months post first feeding [36]). Furthermore, sampling during perceived periods of major physiological perturbation, e.g. hatching and swim up stages, were avoided, as individual variation during transition periods is likely to be critically influenced by sample timing. Body size differences in fish have been linked to developmental stage divergence and transcriptomic differences have been detected between size and age matched wild rainbow trout. Hence the exact methods employed to match life stages of wild and domesticated fish could influence the genes identified as differentially expressed between the stocks [51]. With the aim of minimising the confounding factors described above, this study was designed to provide an insight into genetic differences and interactions between wild and domesticated salmon, since understanding such interactions is essential both for the support of sustainable aquaculture practices and for the maintenance of healthy wild stocks.

Methods

Biological samples

The farmed salmon juveniles used for the present study originated from the Norwegian Mowi strain maintained by Marine Harvest at Tveitevåg, Norway. This represents one of the oldest commercial salmon strains, and at the time of stripping, the eggs and sperm used to generate the family-groups originated from approximately the 10th generation. The Mowi strain was initially selected for increased growth, late maturation and high flesh quality through phenotypic selection, however, a family-based breeding program which included expansion in the numbers of traits being selected for was initiated in 1999 [34]. The Mowi strain has been demonstrated to display freshwater growth rates several times higher than various wild populations [34, 36, 52], and reduced survival compared to wild salmon under natural conditions when simultaneously planted out as eyed eggs [44].

The wild salmon used in this study originated from the Figgjo River in south west Norway. This population represents one of the most abundant in Norway, and is characterised by small to medium-sized fish (typically 1–2 sea winter returns). In the period 15-17th October 2010, 24 wild fish were caught by rod and line angling in the river. These fish were transported to the local hatchery where they were held in tanks before being transported to the Matre research station in western Norway on 25th October 2010. These fish were confirmed to be wild based upon scale growth patterns [53].

Both farmed and wild broodstock were stripped for gametes on 23rd November 2010. A total of 30 families were created; 10 of each of the following crosses: pure wild, Figgjo ♀ × Figgjo ♂; hybrid, Mowi ♀ × Figgjo ♂; pure domesticated, Mowi ♀ × Mowi ♂. Fertilised eggs were placed into single family incubators and were held under standard hatchery conditions. At the eyed egg stage on 22nd February 2011, families were pooled into duplicate experimental groups, i.e. six tanks in total, and by 23rd March 2011 half of the eggs had hatched, these being termed 0°d post-hatch. The first sampling took place during fry yolk-sac re-absorption (256°d post-hatch) and then fish were transferred to heated (13°C) first feeding tanks. Fry were fed on standard hatchery diet (Skretting) 24 hr a day by automatic feeders according to a standard Skretting feeding table for appropriate temperatures. The second sampling took place 5 weeks into exogenous feeding (867°d post-hatch). The fish were starved for 24 hr prior to the second sample. For both sampling time points fry were euthanised with metacaine (Finquel® Vet, Scanvacc, Årnes, Norway) overdose, with yolk sac fry being placed into RNALater® (Life Technologies) and feeding fry being snap frozen on dry ice and stored at -70°C until homogenised.

The experiment was conducted in accordance with Norwegian regulations for the use of animals in research. No specific permits were required for this experiment because the fish were hatched and reared under standard aquaculture conditions without any form of experimental manipulation.

Microarray experimental design

Microarray interrogations were performed using a custom-designed, oligonucleotide microarray platform (Agilent) with 44 K probes per slide (Salar_2; Agilent Design ID:025520). This microarray has been described in detail elsewhere [54] and further used/validated in a number of subsequent studies [5557]. The design is logged with ArrayExpress (http://www.ebi.ac.uk/arrayexpress) under accession number A-MEXP-2065. Dual-label hybridisations were undertaken, with each experimental sample (Cy3 labelled) being competitively hybridised against a pooled reference control (Cy5 labelled) comprising equimolar amounts from each experimental RNA sample. The interrogations comprised 36 separate hybridisations; 3 states (wild × wild; farmed × wild, farmed × farmed) × 2 time-points (sac fry and fed fry) × 6 biological replicates. A single array was excluded from the analysis as it failed quality filtering, hence only five pools of domesticated feeding fry were analysed (Table 1).
Table 1

A representation of the experimental design; each biological replicate comprising equal quantities of RNA from six individuals

 

Sac fry

Feeding fry

Wild; F ♀ × F ♂

6 pools

6 pools

Hybrid; M ♀ × F ♂

6 pools

6 pools

Domesticated; M ♀ × M ♂

6 pools

6 pools

RNA extraction and purification

Whole fry (N = 216) were homogenised rapidly in 8 × volume Tri Reagent (Sigma–Aldrich®, St. Louis, U.S.A.) using a Polytron mechanical homogeniser (Kinematica PT 1300 D, Lucerne, Switzerland) and the RNA extracted following the manufacturer’s instructions. RNA quantity and quality were assessed by spectrophotometry (NanoDrop ND-1000, Thermo Scientific, Wilmington, U.S.A.) and agarose gel electrophoresis respectively. For each hybridisation sample, equal amounts of total RNA from six individuals were pooled, column-purified (RNeasy Mini Kit, Qiagen, Crawley, UK), and then re-quantified and quality assessed as described above.

RNA amplification and labelling

Each pooled RNA sample was amplified (TargetAmp™ 1-Round Aminoallyl-aRNA Amplification Kit, Epicentre Technologies Corporation, Madison, Wisconsin, USA) according to the manufacturer’s instructions. Following quality control (Nanodrop quantification and agarose gel electrophoresis) each aRNA sample was indirectly labelled and purified. Briefly, Cy dye suspensions (Cy3 and Cy5) in sufficient quantity for all labelling reactions were prepared by adding 40 μL high purity dimethyl sulphoxide (Stratagene, Hogehilweg, The Netherlands) per tube of Cy dye (PA23001 or PA25001; GE HealthCare, Little Chalfont, Bucks, UK). Each sample (2.5 μg aRNA) was denatured at 75°C for 5 min and then 3 μL 0.5 M NaHCO3 pH8.5 and 1.5 μL Cy3 or 1.0 μL Cy5 dye was added achieving a total volume of 15 μL per reaction. Samples were incubated for an hour at 25°C in the dark, purified using Illustra AutoSeq G-50 Dye Terminator Removal Kit (Qiagen GE Healthcare) and concentration, dye incorporation and purity were assessed via spectrophotometer (NanoDrop) with products also visualised on a fluorescent scanner (Typhoon Trio, GE Healthcare).

Microarray hybridisation and quality filtering

Hybridisation was performed over two consecutive days using the Agilent Gene Expression Hybridisation Kit (Agilent Technologies) as per manufacturer’s instructions. For each reaction, 825 ng Cy5 labelled reference pool and 825 ng Cy3 labelled individual samples were combined in 35 μL nuclease free water and then 20 μL fragmentation master mix added (consisting of 11 μL of 10X blocking agent, 2 μL 25× fragmentation buffer and 7 μL nuclease free water). The reactions were then incubated at 60°C in the dark for 30 mins, chilled on ice, and mixed with 57 μL 2× GEx Hybridisation buffer (pre heated to 37°C), Following centrifugation (18000 × g for 1 min) the samples were kept on ice until loaded (103 μL) in a semi randomised order onto the microarray slides. Samples from the six biological replicates were spread across different slides, Cy3 fluorescence content (dye incorporation rate × volume) was also taken into consideration. To aid scanning, samples with the most similar amounts of Cy3 were grouped on the same slide. Hybridisation was carried out in a rotating rack oven (Agilent Technologies) at 65°C, 10 rpm over 17 hours.

Following hybridisation, slides were subject to a number of washing steps performed in Easy-Dip™ slide staining containers (Canemco Inc., Quebec, Canada). First, each microarray and backing gasket was disassembled in Agilent Wash Buffer 1 and microarray slides were transferred to an Easy Dip rack submerged in Wash Buffer 1. Following 1 min incubation at room temperature (c. 20°C) and 150 rpm (Stuart Orbital Incubator), slides were briefly dipped into Wash Buffer 1 pre-heated to 31°C, then placed into Wash Buffer 2 (31°C) for 1 min at 150 rpm. Finally, the slides were transferred to acetonitrile for 10 s and then Agilent Stabilization and Drying Solution for 30 s. The slides were then air dried in the dark and scanned within two hours.

Scanning was carried out at 5 μm resolution on an Axon GenePix Pro scanner at 40% laser power. The “auto PMT” function was enabled to adjust PMT for each channel such that less than 0.1% of features were saturated and so that the mean intensity ratio of Cy3:Cy5 signal was close to one. Agilent Feature Extraction Software (v 9.5) was used to identify features and extract background subtracted raw intensity values that were then transferred to GeneSpring GX (v.12) software where the quality filtering and normalisation steps took place. Intensity values ≤ 1 were adjusted to 1 and a Lowess normalisation undertaken. Stringent quality filtering ensured that features that represented technical controls, saturated probes, probe population outliers or probes which were not significantly different from the background were removed. Agilent feature extractions software was used to determine whether a probe was positive and significant based on a 2-sided t-test, indicating if the mean signal of a feature is greater than the corresponding background. A probe was retained if it was positive and significant in at least 75% of the arrays in any 2 of the experimental groups. This left 33,688 of the original 43,466 probes available for downstream analysis. A single array was excluded from the analysis as it was flagged as sub-standard by the feature extraction software and also appeared as a clear outlier on a Principal Component Analysis performed within Genespring in order to compare arrays. Thus 35 of the 36 arrays were statistically analysed.

Details of microarray experiment have been submitted to ArrayExpress under accession number E-MTAB-2578. The recording of the microarray experimental metadata complies with Minimum Information About a Microarray Experiment (MIAME) guidelines.

Microarray data analysis

Differentially expressed genes between the crosses were identified in GeneSpring using a number of statistical methods and criteria. For the entire data analysis, life stages were treated separately and to identify differentially expressed genes between experimental groups pairwise T-tests (unpaired unequal variance, p ≤ 0.01) were performed and a minimum fold change of 1.3 applied. These lists formed the basis of the Venn diagram (Figure 1). In contrast, the functional analysis of the genetic differences between wild and domesticated fish was based on less stringent criteria, with a p ≤ 0.05 and with no fold change requirement and were further analysed in R v.3.0.2 (R Core Team, 2014). This enabled sufficient KEGG annotation for the pathway analysis which in turn narrowed the list of unique genes by further filtering on significant pathways using the gage function of the GAGE package (Generally Applicable Gene-set/Pathway Analysis) [55], q ≤ 0.1) thereby increasing confidence despite the lenient initial comparison. The significant pathways (Table 2) were further analysed using the esset.grp and essGene functions [55] to identify non-redundant pathways and genes that changed over and above the noise level (Figures 2 and 3) respectively. Since pathways belonging to the human disease functional group are difficult to interpret in fish, this group was excluded from the gene enrichment analysis. Genes that were involved in any of the significantly perturbed pathways and changed beyond one standard deviation from the mean of all genes were subject to hierarchical clustering (Pearson correlation) and are presented on the heat maps using gplots package [56]. To look at heritability of differentially expressed genes between stocks, 1-way ANOVA (unequal variance) was performed with 10% FDR (Benjamini-Hochberg). To avoid repeat counting of the same gene, only transcripts that had BLASTx and/or KEGG annotation were chosen and where multiple probes were present for the same gene, the probe with the highest significance was chosen. For the unique genes obtained, additivity; α = (wild-domesticated)/2 and dominance parameters; δ = (wild + domesticated)/2-hybrid were calculated from normalised intensity values and α and δ/α were plotted using the ggplot2 package (Figure 4) [57].
Figure 1

A comparison of the number of differentially expressed transcripts between groups and life stages, based on T-tests (unpaired unequal variance) without multiple testing correction, p ≤ 0.01 and fold-change cut off at 1.3. Panel A and B represent differences detected in the sac and feeding fry stage respectively, whereas panel C shows combined the differences; i.e.: each comparison is the union of the differences detected in the life stages.

Table 2

Significantly differentially represented KEGG pathways (multiple testing corrected p ≤ 0.1) between wild and domesticated stocks in the two life stages, wild fish is considered as control

 

KEGG functional group

KEGG sub-group

KEGG pathway

Direction of perturbation

p-value

Set size

Sac fry

Cellular Processes

Cell growth and death

Oocyte meiosis

Up regulated

0.00212

15

Environmental Information Processing

Signal transduction

Hippo signaling pathway

Up regulated

0.00128

15

Environmental Information Processing

Signal transduction

Wnt signaling pathway

Up regulated

0.00053

20

Genetic Information Processing

Folding, sorting and degradation

Protein processing in endoplasmic reticulum

Up regulated

0.00186

36

Genetic Information Processing

Translation

Aminoacyl-tRNA biosynthesis

Up regulated

0.00734

13

Genetic Information Processing

Translation

Ribosome

Up regulated

0.00016

50

Genetic Information Processing

Translation

Ribosome biogenesis in eukaryotes

Up regulated

0.00024

31

Genetic Information Processing

Translation

RNA transport

Up regulated

0.00002

39

Cellular Processes

Transport and catabolism

Phagosome

Down regulated

0.00042

37

Environmental Information Processing

Signal transduction

NF-kappa B signaling pathway

Down regulated

0.00093

25

Environmental Information Processing

Signaling molecules and interaction

Cytokine-cytokine receptor interaction

Down regulated

≤0.00001

26

Organismal Systems

Immune system

B cell receptor signaling pathway

Down regulated

0.00133

16

Organismal Systems

Immune system

Chemokine signaling pathway

Down regulated

≤0.00001

38

Organismal Systems

Immune system

Complement and coagulation cascades

Down regulated

0.00385

21

Organismal Systems

Immune system

Fc epsilon RI signaling pathway

Down regulated

0.00778

16

Organismal Systems

Immune system

Hematopoietic cell lineage

Down regulated

0.00007

14

Organismal Systems

Nervous system

Glutamatergic synapse

Down regulated

0.00152

19

Organismal Systems

Nervous system

Serotonergic synapse

Down regulated

0.00303

16

Organismal Systems

Nervous system

Synaptic vesicle cycle

Down regulated

0.00171

18

Metabolism

Lipid metabolism

Glycerophospholipid metabolism

Down regulated

0.00781

10

Environmental Information Processing

Signal transduction

NF-kappa B signaling pathway

Two way perturbed

0.00116

25

Environmental Information Processing

Signal transduction

TNF signaling pathway

Two way perturbed

0.00368

19

Environmental Information Processing

Signaling molecules and interaction

Cytokine-cytokine receptor interaction

Two way perturbed

0.00001

26

Environmental Information Processing

Signaling molecules and interaction

Neuroactive ligand-receptor interaction

Two way perturbed

0.00371

23

Organismal Systems

Development

Osteoclast differentiation

Two way perturbed

0.00555

28

Organismal Systems

Immune system

Chemokine signaling pathway

Two way perturbed

0.00343

38

Organismal Systems

Immune system

NOD-like receptor signaling pathway

Two way perturbed

0.00416

14

Organismal Systems

Immune system

Toll-like receptor signaling pathway

Two way perturbed

0.00240

19

Metabolism

Lipid metabolism

Glycerophospholipid metabolism

Two way perturbed

0.00275

10

Feeding fry

Cellular Processes

Transport and catabolism

Peroxisome

Up regulated

0.00014

27

Environmental Information Processing

Signaling molecules and interaction

ECM-receptor interaction

Up regulated

0.01210

12

Organismal Systems

Circulatory system

Cardiac muscle contraction

Up regulated

0.00939

20

Organismal Systems

Digestive system

Fat digestion and absorption

Up regulated

0.00047

16

Organismal Systems

Digestive system

Pancreatic secretion

Up regulated

0.00062

17

Organismal Systems

Digestive system

Protein digestion and absorption

Up regulated

0.00004

23

Organismal Systems

Endocrine system

Adipocytokine signaling pathway

Up regulated

0.00435

15

Organismal Systems

Endocrine system

Insulin signaling pathway

Up regulated

≤0.00001

19

Organismal Systems

Endocrine system

PPAR signaling pathway

Up regulated

≤0.00001

29

Metabolism

Amino acid metabolism

Arginine and proline metabolism

Up regulated

0.00014

17

Metabolism

Amino acid metabolism

Glycine, serine and threonine metabolism

Up regulated

0.00029

17

Metabolism

Carbohydrate metabolism

Glycolysis/Gluconeogenesis

Up regulated

0.00001

25

Metabolism

Carbohydrate metabolism

Propanoate metabolism

Up regulated

0.00084

12

Metabolism

Energy metabolism

Carbon fixation in photosynthetic organisms

Up regulated

0.00091

12

Metabolism

Energy metabolism

Methane metabolism

Up regulated

0.00048

12

Metabolism

Energy metabolism

Oxidative phosphorylation

Up regulated

0.00058

59

Metabolism

Lipid metabolism

Biosynthesis of unsaturated fatty acids

Up regulated

0.00004

12

Metabolism

Lipid metabolism

Fatty acid degradation

Up regulated

0.00056

16

Metabolism

Lipid metabolism

Fatty acid elongation

Up regulated

0.00742

11

Metabolism

Lipid metabolism

Glycerolipid metabolism

Up regulated

0.00429

15

Environmental Information Processing

Signal transduction

Jak-STAT signaling pathway

Down Regulated

0.00005

16

Environmental Information Processing

Signal transduction

NF-kappa B signaling pathway

Down Regulated

≤0.00001

28

Environmental Information Processing

Signaling molecules and interaction

Cytokine-cytokine receptor interaction

Down Regulated

≤0.00001

38

Environmental Information Processing

Signaling molecules and interaction

Neuroactive ligand-receptor interaction

Down Regulated

0.00122

22

Organismal Systems

Immune system

Antigen processing and presentation

Down Regulated

0.00267

22

Organismal Systems

Immune system

Chemokine signaling pathway

Down Regulated

≤0.00001

35

Organismal Systems

Immune system

Cytosolic DNA-sensing pathway

Down Regulated

0.00799

10

Organismal Systems

Immune system

Fc epsilon RI signaling pathway

Down Regulated

0.00130

12

Organismal Systems

Immune system

Fc gamma R-mediated phagocytosis

Down Regulated

0.00407

17

Organismal Systems

Immune system

Toll-like receptor signaling pathway

Down Regulated

0.00055

17

Genetic Information Processing

Folding, sorting and degradation

Proteasome

Down Regulated

≤0.00001

25

Environmental Information Processing

Signaling molecules and interaction

Cytokine-cytokine receptor interaction

Two way perturbed

≤0.00001

38

Set size is the number of genes included in the gene set test. Non-redundant pathways are shown in bold.

Figure 2

Hierarchical clustering based on normalised intensity values of the essential genes of the significant pathways detected in sac fry.

Figure 3

Hierarchical clustering based on normalised intensity values of the essential genes of the significant pathways detected in feeding fry.

Figure 4

Visual representation of heritability of annotated transcripts differentially expressed between experimental groups based on 1-way ANOVA (10% FDR). Error bars show the standard deviation between replicate arrays. Nine overdominant, one dominant and one recessive transcript were excluded from the graph for easier visualisation.

RT-qPCR validation

Expression of five selected genes was validated using real time quantitative polymerase chain reaction (RT-qPCR). Genes of interest were chosen based on their p-values in either of the life stages and/or fold changes across experimental groups. Two additional ‘housekeeping’ genes were included in the analysis for normalisation purposes. Reference genes were selected from the literature or based on their constant/steady expression profile in the microarray analysis. Details of the selection criteria, primer design and RT-qPCR are given in (Additional file 1).

cDNA was synthesised from 1 μg of column-purified total RNA per sample using the High-Capacity cDNA RT kit (Applied Biosystems, Paisley, U.K.), following manufacturer’s instructions, but using a mixture of the random primers (1.5 μL as supplied) and anchored oligo-dT (0.5 μL at 400 ng/μl). Negative controls lacking reverse transcriptase were included to check for genomic DNA contamination. A pool comprising similar amounts of all cDNA samples was used in a dilution series to determine primer efficiencies. The remaining cDNAs were then diluted 20-fold in water.

qPCR amplifications were carried out in duplicate 20 μL reaction volumes, containing either 5 μL of cDNA (1/20 dilution) or no enzyme control (1/20 dilution) or serially-diluted cDNA pools (ranging from 1/10 to 1/640 dilution) or water (no template control) and 0.5 μM each primer and 10 μL ABgene Sybr Green (2×; Thermo Scientific, Wilmington, U.S.A.). All qPCR reactions were performed using the following thermal profile: initial activation at 95°C for 15 min, amplification through 40 cycles of 95°C for 15 s, 60°C for 15 s and 72°C for 30 s. Following the amplification phase, a melt curve analysis was performed to confirm the amplification of a single product. In addition, to determine the size and identity of the amplicons, agarose gel electrophoresis of amplicons was undertaken. Data were analysed in REST 2009 software [58].

Results and discussion

Differentially expressed transcripts between strains and life stages

For the purposes of statistical analysis, life stages were treated separately. In order to identify differentially expressed genes between experimental groups, pairwise T-tests (unpaired unequal variance, p ≤ 0.01, fold change ≥ 1.3) were used. The largest differences in transcription were observed between the domesticated and wild groups, however, it is interesting to note that there were fewer significantly differentially expressed transcripts between fish of hybrid and domesticated origin (176 in sac fry and 153 in feeding fry), than between wild and hybrids (300 and 567 respectively) (Figure 1A and 1B). Maternal effects might have contributed to the bias, as hybrid eggs were originated from domesticated females. In addition to direct genetic effects from the yolk sac, such as highly abundant maternal ribosomes and maternally deposited RNAs, other yolk sac components, such as hormones, proteins or nutrients can influence the offspring’s genomic activity by modifying or interacting with its transcription factors or DNA structure [59]. It was also noteworthy that there were over 1.8 times as many differentially expressed entities detected in the exogenous feeding stage than in the yolk-sac samples in the wild-domesticated and hybrid-wild comparisons (Figure 1). The initiation of exogenous feeding is known to alter gene expression through the activation of certain metabolic pathways, such as the glycolytic pathway enabling the utilisation of exogenous feeds or fatty acid pathways facilitating lipid metabolism and deposition [60]. This was reflected in the observation that differentially expressed genes belonging to carbohydrate and lipid metabolism pathways were common in feeding fry, but not in sac fry. Furthermore, the hatchery diet employed, containing plant derivatives and thus poorly matching the usual diet of wild fish, might affect gene expression differentially in wild and domesticated stocks, and may thereby account for some of the differences detected in the feeding stage. However, the initiation of exogenous feeding did not increase the number of differentially expressed transcripts between domesticated fish and their hybrids, despite the expected fading of maternal effects in later life stages [59]. Although some of the significantly differentially expressed genes overlapped between life stages, sampling at two time points revealed a number of life stage specific patterns (Figure 1C).

Functional classification of differentially expressed genes between wild and domesticated strains

It is difficult to make comparisons between studies at the level of differentially expressed genes due to the use of different stocks, life stages, tissues and microarray designs. Although common genes are rarely reported, biological pathways and even more so functional classes tend to overlap between studies [40]. To characterise the functional significance of the transcripts that were differentially expressed between wild and domesticated fish, we assigned KEGG annotations to them, unique genes were then subject to gene enrichment analysis (Table 2).

Transcriptional changes between wild and domesticated fish varied according to functional group life stage considered (Table 2). Among the differentially expressed transcripts, the ones relating to the immune system were significantly over-represented in both life stages. In addition, disproportionately large numbers of differentially expressed transcripts were detected for the nervous and digestive systems in sac fry and feeding fry respectively (Table 2). An interesting parallel to this trend has been reported from transcriptomic comparisons between normal and dwarf lake white fish (Coregonus spp.), where the authors stressed the importance of survival functions in dwarf individuals and growth related functions in normal fish [61]. The majority of differentially expressed immune related transcripts were down-regulated in domesticated animals, whereas the opposite was observed for transcripts associated with the digestive system (Table 2). Such apparent trade-offs between growth and immune response have also been documented in Atlantic salmon by previous authors [52, 62]. It has been suggested that selection for growth could therefore favour individuals with more active endocrine regulatory components [63] and this is supported by the findings that most differentially expressed transcripts relating to the digestive system showed higher expression in domesticated individuals as did endocrine system related transcripts (Table 2). In contrast, transcripts with nervous system and environmental information processing roles were mainly down-regulated in the domesticated strain, which might be explained by the relatively homogeneous and controlled environment experienced by domesticated individuals. Tymchuk and colleagues reported a down regulation of cell division in the brain of domestic rainbow trout, despite conducting their experiment on size-matched fish [64]. The relationship of wild : domesticated transcripts involved in energy metabolism, protein synthesis, stress and immune response, response to stimuli and digestion are in agreement between this study and previous studies investigating effects of domestication in salmonids [40, 41, 51, 65]. Dishevelled Segment Polarity Protein 2 (DVL2), a member of the Wnt signalling pathway, was hypothesised in previous work to show footprints of selection through domestication in Atlantic salmon [66]. Although oligo probes for this particular gene were not incorporated in the design of Salar_2, the Wnt signalling pathway was significantly up regulated in the sac fry stage.

A number of differentially expressed pathways were common between life stages, further increasing confidence in their significance. Toll-like receptor interaction, NF-kappa B signalling and cytokine-cytokine interactions pathways were down-regulated in the domesticated strain at both sampling points (Table 2). Toll-like receptors are primary sensors detecting a wide variety of microbial components and triggering innate immune responses through activating the transcription factor nuclear factor-kappaB, which controls the expression of inflammatory cytokine genes [67]. Cytokines have the ability to regulate endocrine activity and stress hormones and, in addition to immune activation they are likely to play a role in a number of interrelated processes, such as food intake efficiency, energy balance and tissue metabolism [68], and could thus provide a linking element between the differentially expressed pathways identified in this study.

To visualise expression patterns of the key genes belonging to identified significant pathways, hierarchical clustering was performed and expression intensities are shown on heat maps for the two life stages (Figures 2 and 3). Although universal transcript-level differences have not been identified when studying different wild and domesticated strains, there are a small number of genes that have been reported to be differentially expressed by more than one study. Parallel changes included ATP synthase, growth hormone receptor [39], cytochrome this study, [39, 52, 65], solute carrier family members (this study [51, 65]), glyceraldehyde 3-phosphate dehydrogenase this study, [39] and malate/NADH dehydrogenase this study, [39, 65]. A number of immune related transcripts such as lectin and various CD and MHC family members were also reported by multiple sources, however their direction of change varies between studies this study, [39, 52, 64, 65]. This might be due to the high specificity of the pathogen induced chemokine regulation [69].

Heritability predictions of differentially expressed genes

To shed light on the inheritance patterns of the genes differentially expressed between stocks gene expression additivity was studied. 1-way ANOVAs were performed with multiple testing corrections (corrected p ≤ 0.1) and only unique genes (see Methods for details); 25 in sac fry and 313 in feeding fry were included in the analysis (Additional file 2). By calculating the ratio of the dominance parameter, δ = (wild + domesticated)/2-hybrid and the additive parameter, α = (wild-domesticated)/2 one can estimate the inheritance pattern of genes from their expression values. By definition a transcript whose hybrid gene expression value corresponds to the mid value of the parents is additive, whereas a transcript whose hybrid gene expression value resembles more closely one parent or another is dominant. δ/α = 0 corresponds to a state of perfect within-locus additivity (i.e.; δ = 0) and δ/α = 1 or -1 corresponds to complete dominance. According to logic and an assumption used by Renaut et al. (2009) in halving the intervals, we can presume that transcripts resemble:

– Additivity if -0.5 < δ/α < 0.5

– Paternal/Wild dominance if -1.5 < δ/α < -0.5

– Maternal/Domesticated dominance if 0.5 < δ/α < 1.5

– Overdominance if δ/α falls out of the interval -1.5-1.5

According to our results (Figure 4), most transcripts found to be differentially expressed between stocks showed either additive; 48% and 45% or maternal/domesticated dominant; 52% and 42.2% heritance patterns in sac fry and feeding fry respectively. In addition, 6.1% of transcripts were paternal dominant and 6.7% were overdominant in the feeding stage. Among the overdominant transcripts, the ones considered to be more similar to the mother’s expression were approximately three times more abundant than the ones found to be closer to the father’s. Additivity, as an important mode of inheritance between diverged intraspecific populations, has been reported in previous gene expression studies conducted on wild and domesticated salmon [65] and brook charr [70] as well as on dwarf and normal lake white fish [71]. Additive genetic variation was also found to influence a number of traits in Atlantic salmon such as fitness, survival [3, 72], growth and behaviour [34, 36, 72]. In addition to additivity, the findings of this study are indicative of the relevance of a dominant inheritance pattern in wild-domesticated hybrids. However, since the hybrids in this study were produced only by crossing a domesticated dam with a wild sire, we are unable to conclude whether the dominance is purely caused by maternal effects or if the domesticated strain has a superior influence on the transcription of the offspring too. The importance of maternal dominance was highlighted by Bougas and colleagues when studying the transcriptional landscape of wild and domesticated brook charr hybrids. Similarly to the results reported here, their comparison of domesticated and anadromous wild fish revealed that 54.3% of the differentially expressed transcripts exhibited an additive inheritance pattern, 40% showed maternal, 5% paternal dominance, and a small number of transcripts were over/under dominant [70]. Contrary to the current findings, Debes et al. reported that 26.8% of the wild-domesticated Atlantic salmon hybrid transcripts showed wild dominance [65]. There are a number of variables between the experiments that might account for the differences observed between the studies. First, since different tissue types (gill vs whole fry) were used in the studies, tissue specific gene expression might have affected the results. Second it is likely that the different parental strains crossed had different genetic architecture, which could have affected the gene expression of the offspring. In addition, Debes et al. report the use of reciprocal hybrids, whereas in this study, hybrid eggs originated only from domesticated animals. Third, since parental effects vary over time, and seem to be most pronounced at the yolk sac resorption stage, and tend to decrease over time, the sampling time-point selected could also have contributed to the gene expression differences of the hybrids [73]. Indeed, in the current study a higher proportion of genes showed a dominant inheritance pattern at the yolk sac stage (52%) then during exogenous feeding (42%), suggesting stronger maternal influence at the earlier life stage. Tissue specificity, the time spent under selection pressure and the genetic architecture of the parental strains might have contributed to the disagreement between our results and a study reporting equal additive, recessive and dominant regulation when analysing the heritability of transcription in livers of wild and domesticated rainbow trout [51].

RT-qPCR validation of the results

Four significantly differentially regulated transcripts were chosen for further investigation via RT-qPCR, based on their p-values and fold changes. In addition, IGF-1 was also included in the RT-qPCR experiment due to its hypothesised functional importance in the process of domestication [35] and despite the fact that no significant gene expression difference was detected for this transcript on the microarray. Although fold changes were generally low, a good correspondence of expression ratio and direction of regulation was obtained between the microarray and RT-qPCR for most genes quantified (Table 3). Consistent with the microarray data, RT-qPCR results also showed no significant difference in expression of IGF-1 between experimental groups. In contrast, Solberg et al. found elevated IGF-1 mRNA levels in domesticated and hybrid Atlantic salmon head kidneys compared to those of wild fish [35]. The disagreement between our results might be due to the different strains, life stages and tissue types (head kidney vs whole fry) used in the studies.
Table 3

A comparison of gene expression ratios of domesticated and hybrid salmon with respect to wild individuals evaluated using RT-qPCR and microarray analysis

 

Sac fry

Feeding fry

 

Domesticated

Hybrid

Domesticated

Hybrid

Target

RT-qPCR

MA

RT-qPCR

MA

RT-qPCR

MA

RT-qPCR

MA

MHCII

-1.48

-1.37

(-1.17)

(-1.10)

-1.95

-2.09

-1.24

-1.38

EPHX

1.27

2.24

1.20

1.57

1.23

2.08

1.20

1.55

IGF

-1.11

(1.39)

(1.01)

(1.56)

(1.08)

(-1.14)

(1.05)

(1.79)

Pesc

(1.02)

2.82

(1.03)

1.91

-1.15

2.43

-1.10

(1.36)

Poly10

-2.31

-6.72

-1.28

(-1.78)

-1.61

-3.19

-1.28

-1.63

Microarray values are based on T-tests (unpaired unequal variance, p ≤ 0.01 and FC > =1.3), whereas RT-qPCR ratios were obtained by REST2009 (p ≤ 0.05). Non-significant values are shown in parenthesis. Ratios lower than 1 are expressed as -1/ratio to obtain an equivalent value to ratios above 1.

Conclusions

This study investigated transcriptional differences between wild and domesticated Atlantic salmon at the early life-history stages, before developmental/growth rate between them could substantially influence experimental outcome. According to the results of this study, genetic information processing and translation pathways in particular are up regulated in domesticated fish whereas immune system related pathways are down regulated in the yolk sac stage. During early exogenous feeding, the digestive and endocrine systems as well as carbohydrate, energy and lipid metabolism pathways are more highly expressed in the domesticated strain, while environmental information processing and immune pathways, especially those related to cytokines, are suppressed compared to those of wild stock.

While sampling complications following growth divergence between stocks need to be considered, it is important to study different life-stages to explore developmental state-specific differences between wild and domesticated individuals and the possible influence of common rearing on gene expression (i.e. translocation of wild fish into a hatchery environment). This study re-enforces the necessity of studying reciprocal hybrids in order to differentiate between maternal (and potentially epigenetic) and domestication effects influencing heritability. Finally, these data support the view that the effect of introgression is highly dependent on the population specific genetic architectures of the crosses [41, 51, 74], thus studies conducted on multiple strains are essential to draw general conclusions regarding the outcome of genetic interactions between wild and farmed fish.

Availability of supporting data

Details of microarray experiment have been submitted to ArrayExpress under accession number E-MTAB-2578 and are accessible at http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2578/. The recording of the microarray experimental metadata complies with Minimum Information About a Microarray Experiment (MIAME) guidelines.

Declarations

Acknowledgements

This study was financed by the Norwegian Research Council project INTERACT. We would like to thank Lise Dyrhovden and Ivar Helge Matre for their assistance in producing the fish upon which the current study is based, Jacqueline Ireland for laboratory technical advice and Drs Stephen Carmichael and Christian De Santis for inspiring discussion regarding microarray data analysis.

Authors’ Affiliations

(1)
Institute of Aquaculture, School of Natural Sciences, University of Stirling
(2)
Institute of Marine Research, Population genetics

References

  1. Hindar K, Ryman N, Utter F: Genetic Effects of Cultured Fish on Natural Fish Populations. Can J Fish Aquat Sci. 1991, 48: 945-957. 10.1139/f91-111.View ArticleGoogle Scholar
  2. Naylor R, Hindar K, Fleming I, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M: Fugitive Salmon: Assessing the Risks of Escaped Fish from Net-Pen Aquaculture. Bioscience. 2005, 55: 427-10.1641/0006-3568(2005)055[0427:FSATRO]2.0.CO;2.View ArticleGoogle Scholar
  3. Ferguson A, Fleming IA, Hindar K, Skaala O, McGinnity P, Cross T, Prodohl P: Farm escapees. Atl Salmon Genet Conserv Manag. Edited by: Verspoor E, Stradmeyer L, Nielsen J. 2007, Oxford: Blackwell Publishing Ltd, 357-398.Google Scholar
  4. Glover KA, Skilbrei OT, Skaala Ø: Genetic assignment identifies farm of origin for Atlantic salmon Salmo salar escapees in a Norwegian fjord. ICES J Mar Sci. 2008, 65 (6): 912-920. 10.1093/icesjms/fsn056.View ArticleGoogle Scholar
  5. Glover K: Forensic identification of fish farm escapees: the Norwegian experience. Aquac Environ Interact. 2010, 1: 1-10.View ArticleGoogle Scholar
  6. Zhang Z, Glover K, Wennevik V, Svåsand T, Sørvik GE, Fiske P, Karlsson S, Skaala Ø: Genetic analysis of Atlantic salmon captured in a netting station reveals multiple escapement events from commercial fish farms. Fish Manag Ecol. 2013, 20: 42-51. 10.1111/fme.12002.View ArticleGoogle Scholar
  7. Seagrov H, Urdal K: Escaped Farmed Salmon in the Sea and Rivers; Numbers and Origin. 2006, Bergen, Norway: Rådgivende Biologer AS, Report 947/06, 21Google Scholar
  8. Skilbrei O: Reduced migratory performance of farmed Atlantic salmon post-smolts from a simulated escape during autumn. Aquac Environ Interact. 2010, 1: 117-125. 10.3354/aei00013.View ArticleGoogle Scholar
  9. Skilbrei O: Adult recaptures of farmed Atlantic salmon post-smolts allowed to escape during summer. Aquac Environ Interact. 2010, 1: 147-153. 10.3354/aei00017.View ArticleGoogle Scholar
  10. Gausen D, Moen V: Large-Scale Escapes of Farmed Atlantic Salmon (Salmo salar) into Norwegian Rivers Threaten Natural Populations. Can J Fish Aquat Sci. 1991, 48: 426-428. 10.1139/f91-055.View ArticleGoogle Scholar
  11. Fiske P, Lund R, Hansen L: Relationships between the frequency of farmed Atlantic salmon, Salmo salar L., in wild salmon populations and fish farming activity in Norway, 1989–2004. ICES J Mar Sci. 2006, 63: 1182-1189. 10.1016/j.icesjms.2006.04.006.View ArticleGoogle Scholar
  12. Webb JH, Youngson AF, Thomson CE, Hay DW, Donaghy MJ, McLaren IS: Spawning of escaped farmed Atlantic salmon, Salmo salar L., in western and northern Scottish rivers: egg deposition by females. Aquac Res. 1993, 24: 663-670. 10.1111/j.1365-2109.1993.tb00642.x.View ArticleGoogle Scholar
  13. Youngson AF, Webb JH, Maclean JC, Whyte BM: Short communication Frequency of occurrence of reared Atlantic salmon in Scottish salmon fisheries. ICES J Mar Sci. 1997, 54: 1216-1220. 10.1016/S1054-3139(97)80028-8.View ArticleGoogle Scholar
  14. Walker A, Beveridge M, Crozier W, Omaoileidigh N, Milner N: Monitoring the incidence of escaped farmed Atlantic salmon, Salmo salar L., in rivers and fisheries of the United Kingdom and Ireland: current progress and recommendations for future programmes. ICES J Mar Sci. 2006, 63: 1201-1210. 10.1016/j.icesjms.2006.04.018.View ArticleGoogle Scholar
  15. Gudjonsson S: Occurrence of reared salmon in natural salmon rivers in Iceland. Aquaculture. 1991, 98: 133-142. 10.1016/0044-8486(91)90378-K.View ArticleGoogle Scholar
  16. Volpe JP, Taylor EB, Rimmer DW, Glickman BW: Evidence of Natural Reproduction of in a Salmon Atlantic Aquaculture-Escaped British Columbia River Coastal. Conserv Biol. 2014, 14: 899-903.View ArticleGoogle Scholar
  17. Morris MRJ, Fraser DJ, Heggelin AJ, Whoriskey FG, Carr JW, O’Neil SF, Hutchings J: Prevalence and recurrence of escaped farmed Atlantic salmon (Salmo salar) in eastern North American rivers. Can J Fish Aquat Sci. 2008, 65: 2807-2826. 10.1139/F08-181.View ArticleGoogle Scholar
  18. Fleming AIA, Jonsson B, Gross MR, Lamberg A, Fleming IA: An experimental study of the reproductive behaviour and success of farmed and wild Atlantic salmon (Salmo salar). J Appl Ecol. 1996, 33: 893-905. 10.2307/2404960.View ArticleGoogle Scholar
  19. Fleming I, Hindar K, Mjølnerød IB, Jonsson B, Balstad T, Lamberg A: Lifetime success and interactions of farm salmon invading a native population. Proc Biol Sci. 2000, 267: 1517-1523. 10.1098/rspb.2000.1173.PubMed CentralPubMedView ArticleGoogle Scholar
  20. Webb JH, Hay DW, Cunningham PD, YAF: The spawning behaviour of escaped farmed and wild adult Atlantic salmon (& imo sakzr L .) in a northern Scottish river. Aquaculture. 1991, 97-110.Google Scholar
  21. Crozier WW: Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L.) in a Northern Irish river. Aquaculture. 1993, 113: 19-29. 10.1016/0044-8486(93)90337-X.View ArticleGoogle Scholar
  22. Clifford SL, McGinnity P, Ferguson A: Genetic changes in Atlantic salmon (Salmo salar) populations of Northwest Irish rivers resulting from escapes of adult farm salmon. Can J Fish Aquat Sci. 1998, 55: 358-363. 10.1139/f97-229.View ArticleGoogle Scholar
  23. Skaala O, Wennevik V, Glover K: Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES J Mar Sci. 2006, 63: 1224-1233. 10.1016/j.icesjms.2006.04.005.View ArticleGoogle Scholar
  24. Glover K, Quintela M, Wennevik V, Besnier F, Sørvik AGE, Skaala Ø: Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One. 2012, 7: e43129-10.1371/journal.pone.0043129.PubMed CentralPubMedView ArticleGoogle Scholar
  25. Glover KA, Pertoldi C, Besnier F, Wennevik V, Kent M, Skaala Ø: Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs. BMC Genet. 2013, 14: 74-PubMed CentralPubMedView ArticleGoogle Scholar
  26. Taylor EB: A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture. 1991, 185-207.Google Scholar
  27. McGinnity P, Prodohl P, Maoileidigh NO, Hynes R, Cotter D, Baker N, O’Hea B, Ferguson A: Differential lifetime success and performance of native and non-native Atlantic salmon examined under communal natural conditions. J Fish Biol. 2004, 65 (SUPPL. A): 173-187.View ArticleGoogle Scholar
  28. Garcia de Leaniz C, Fleming I, Einum S, Verspoor E, Jordan WC, Consuegra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson F, Webb JH, Vøllestad L, Villanueva B, Ferguson A, Quinn TP: A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev Camb Philos Soc. 2007, 82: 173-211. 10.1111/j.1469-185X.2006.00004.x.PubMedView ArticleGoogle Scholar
  29. Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB: Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity (Edinb). 2011, 106: 404-420. 10.1038/hdy.2010.167.View ArticleGoogle Scholar
  30. Gjedrem T, Gjoen HN, Gjerde B: Genetic origin of Norwegian farmed Atlantic salmon. Aquaculture. 1991, 41-50.Google Scholar
  31. Gjedrem T: Genetic improvement of cold-water fish species. Aquac Res. 2000, 31 (1): 25-33. 10.1046/j.1365-2109.2000.00389.x.View ArticleGoogle Scholar
  32. Gjedrem T: The first family-based breeding program in aquaculture. Rev Aquac. 2010, 2: 2-15. 10.1111/j.1753-5131.2010.01011.x.View ArticleGoogle Scholar
  33. Thodesen J, Grisdale-Helland B, Helland SJ, Gjerde B: Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (Salmo salar). Aquaculture. 1999, 180: 237-246. 10.1016/S0044-8486(99)00204-5.View ArticleGoogle Scholar
  34. Glover K, Ottera H, Olsen R, Slinde E, Taranger G, Skaala O: A comparison of farmed, wild and hybrid Atlantic salmon (Salmo salar L.) reared under farming conditions. Aquaculture. 2009, 286: 203-210. 10.1016/j.aquaculture.2008.09.023.View ArticleGoogle Scholar
  35. Solberg MF, Kvamme BO, Nilsen F, Glover K: Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin. BMC Res Notes. 2012, 5: 672-10.1186/1756-0500-5-672.PubMed CentralPubMedView ArticleGoogle Scholar
  36. Solberg MF, Skaala Ø, Nilsen F, Glover KA: Does domestication cause changes in growth reaction norms? A study of farmed, wild and hybrid Atlantic salmon families exposed to environmental stress. PLoS One. 2013, 8: e54469-10.1371/journal.pone.0054469.PubMed CentralPubMedView ArticleGoogle Scholar
  37. Einum S, Fleming I: Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. J Fish Biol. 1997, 50: 634-651. 10.1111/j.1095-8649.1997.tb01955.x.View ArticleGoogle Scholar
  38. Norris AT, Bradley DG, Cunningham EP: Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture. 1999, 180 (3-4): 247-264. 10.1016/S0044-8486(99)00212-4.View ArticleGoogle Scholar
  39. Skaala Ø, Høyheim B, Glover K, Dahle G: Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L.): allelic diversity and identification of individuals. Aquaculture. 2004, 240: 131-143. 10.1016/j.aquaculture.2004.07.009.View ArticleGoogle Scholar
  40. Roberge C, Einum S, Guderley H, Bernatchez L: Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon. Mol Ecol. 2006, 15: 9-20.PubMedView ArticleGoogle Scholar
  41. Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L: Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Mol Ecol. 2008, 17: 314-324. 10.1111/j.1365-294X.2007.03438.x.PubMedView ArticleGoogle Scholar
  42. Mcginnity P, Stone C, Taggart JB, Cooke D, Cotter D, Hynes R, Mccamley C, Cross T, Ferguson A: Genetic impact of escaped farmed Atlantic salmon (Salmo salar L .) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J Mar Sci. 1997, 54 (6): 998-1008.Google Scholar
  43. McGinnity P, Prodöhl P, Ferguson A, Hynes R, Maoiléidigh NO, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T: Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc Biol Sci. 2003, 270: 2443-2450. 10.1098/rspb.2003.2520.PubMed CentralPubMedView ArticleGoogle Scholar
  44. Skaala Ø, Glover KA, Barlaup BT, Svåsand T, Besnier F, Hansen MM, Borgstrøm R, Fleming I: Performance of farmed, hybrid, and wild Atlantic salmon (Salmo salar) families in a natural river environment. Can J Fish Aquat Sci. 2012, 69: 1994-2006. 10.1139/f2012-118.View ArticleGoogle Scholar
  45. Araki H, Berejikian B, Ford MJ, Blouin MS: Fitness of hatchery-reared salmonids in the wild. Evol Appl. 2008, 1: 342-355. 10.1111/j.1752-4571.2008.00026.x.PubMed CentralPubMedView ArticleGoogle Scholar
  46. Araki H, Schmid C: Is hatchery stocking a help or harm?. Aquaculture. 2010, 308: S2-S11.View ArticleGoogle Scholar
  47. King M, Wilson AC: Evolution at Two Levels in Humans and Chimpanzees. Science. 1975, 188 (4184): 107-116. 10.1126/science.1090005.PubMedView ArticleGoogle Scholar
  48. Carroll SB: Evolution at two levels: on genes and form. PLoS Biol. 2005, 3: e245-10.1371/journal.pbio.0030245.PubMed CentralPubMedView ArticleGoogle Scholar
  49. Schalburg Von KR, Rise ML, Cooper G, Brown GD, Gibbs R, Nelson CC, Davidson WS, Koop BF: Fish and chips: various methodologies demonstrate utility of a 16,006-gene salmonid microarray. BMC Genomics. 2005, 6: 126-10.1186/1471-2164-6-126.View ArticleGoogle Scholar
  50. Taggart JB, Bron JE, Martin S a M, Seear PJ, Høyheim B, Talbot R, Carmichael SN, Villeneuve LN, Sweeney GE, Houlihan DF, Secombes CJ, Tocher DR, Teale J: A description of the origins, design and performance of the TRAITS-SGP Atlantic salmon Salmo salar L. cDNA microarray. J Fish Biol. 2008, 72: 2071-2094. 10.1111/j.1095-8649.2008.01876.x.PubMed CentralPubMedView ArticleGoogle Scholar
  51. White SL, Sakhrani D, Danzmann RG, Devlin RH: Influence of developmental stage and genotype on liver mRNA levels among wild, domesticated, and hybrid rainbow trout (Oncorhynchus mykiss). BMC Genomics. 2013, 14: 673-10.1186/1471-2164-14-673.PubMed CentralPubMedView ArticleGoogle Scholar
  52. Glover K, Skår C, Christie KE, Glette J, Rudra H, Skaala Ø: Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture. 2006, 254: 82-91. 10.1016/j.aquaculture.2005.10.041.View ArticleGoogle Scholar
  53. LUND RA, HANSEL LP: Identification of wild and reared Atlantic salmon, Salmo salar L., using scale characters. Aquac Res. 1991, 22: 499-508. 10.1111/j.1365-2109.1991.tb00763.x.View ArticleGoogle Scholar
  54. Tacchi L, Bickerdike R, Douglas A, Secombes CJ, Martin S a M: Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2011, 31: 704-715. 10.1016/j.fsi.2011.02.023.PubMedView ArticleGoogle Scholar
  55. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ: GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics. 2009, 10: 161-10.1186/1471-2105-10-161.PubMed CentralPubMedView ArticleGoogle Scholar
  56. Warnes AGR, Bolker B, Bonebakker L, Huber W, Liaw A, Lumley T, Magnusson A, Moeller S, Schwartz M, Venables B, Warnes MGR: gplots: Various R programming tools for plotting data. 2014, http://cran.r-project.org/web/packages/gplots/index.html,Google Scholar
  57. Wickham H: ggplot2: Elegant graphics for data analysis. 2009, New York: SpringerView ArticleGoogle Scholar
  58. Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30: e36-10.1093/nar/30.9.e36.PubMed CentralPubMedView ArticleGoogle Scholar
  59. Bougas B, Audet C, Bernatchez L: The influence of parental effects on transcriptomic landscape during early development in brook charr (Salvelinus fontinalis, Mitchill). Heredity (Edinb). 2013, 110: 484-491. 10.1038/hdy.2012.113.View ArticleGoogle Scholar
  60. Mennigen J, Skiba-Cassy S, Panserat S: Ontogenetic expression of metabolic genes and microRNAs in rainbow trout alevins during the transition from the endogenous to the exogenous feeding period. J Exp Biol. 2013, 216 (Pt 9): 1597-1608.PubMedView ArticleGoogle Scholar
  61. Bernatchez L, Renaut S, Whiteley AR, Derome N, Jeukens J, Landry L, Lu G, Nolte AW, Ostbye K, Rogers SM, St-Cyr J: On the origin of species: insights from the ecological genomics of lake whitefish. Philos Trans R Soc Lond B Biol Sci. 2010, 365: 1783-1800. 10.1098/rstb.2009.0274.PubMed CentralPubMedView ArticleGoogle Scholar
  62. Glover K a, Bergh Ø, Rudra H, Skaala Ø: Juvenile growth and susceptibility to Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.) of farmed, hybrid and wild parentage. Aquaculture. 2006, 254: 72-81. 10.1016/j.aquaculture.2005.10.040.View ArticleGoogle Scholar
  63. Fleming I, Agustsson T: Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). J Fish. 2002, 1330: 1323-1330.Google Scholar
  64. Tymchuk W, Sakhrani D, Devlin R: Domestication causes large-scale effects on gene expression in rainbow trout: analysis of muscle, liver and brain transcriptomes. Gen Comp Endocrinol. 2009, 164: 175-183. 10.1016/j.ygcen.2009.05.015.PubMedView ArticleGoogle Scholar
  65. Debes PV, Normandeau E, Fraser DJ, Bernatchez L, Hutchings JA: Differences in transcription levels among wild, domesticated, and hybrid Atlantic salmon (Salmo salar) from two environments. Mol Ecol. 2012, 21: 2574-2587. 10.1111/j.1365-294X.2012.05567.x.PubMedView ArticleGoogle Scholar
  66. Martinez V, Dettleff P, Lopez P, Fernandez G, Jedlicki A, Yañez JM, Davidson WS: Assessing footprints of selection in commercial Atlantic salmon populations using microsatellite data. Anim Genet. 2013, 44: 223-226. 10.1111/j.1365-2052.2012.02387.x.PubMedView ArticleGoogle Scholar
  67. Kawai T, Akira S: Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007, 13: 460-469. 10.1016/j.molmed.2007.09.002.PubMedView ArticleGoogle Scholar
  68. Tort L: Stress and immune modulation in fish. Dev Comp Immunol. 2011, 35: 1366-1375. 10.1016/j.dci.2011.07.002.PubMedView ArticleGoogle Scholar
  69. Alejo A, Tafalla C: Chemokines in teleost fish species. Dev Comp Immunol. 2011, 35: 1215-1222. 10.1016/j.dci.2011.03.011.PubMedView ArticleGoogle Scholar
  70. Bougas B, Granier S, Audet C, Bernatchez L: The transcriptional landscape of cross-specific hybrids and its possible link with growth in brook charr (Salvelinus fontinalis Mitchill). Genetics. 2010, 186: 97-107. 10.1534/genetics.110.118158.PubMed CentralPubMedView ArticleGoogle Scholar
  71. Renaut S, Nolte W, Bernatchez L: Gene expression divergence and hybrid misexpression between lake whitefish species pairs (Coregonus spp. Salmonidae). Mol Biol Evol. 2009, 26: 925-936. 10.1093/molbev/msp017.PubMedView ArticleGoogle Scholar
  72. Fraser DJ, Houde ALS, Debes PV, O’Reilly P, Eddington JD, Hutchings J: Consequences of farmed-wild hybridization across divergent wild populations and multiple traits in salmon. Ecol Appl. 2010, 20: 935-953. 10.1890/09-0694.1.PubMedView ArticleGoogle Scholar
  73. Bougas B, Normandeau E, Audet C, Bernatchez L: Linking transcriptomic and genomic variation to growth in brook charr hybrids (Salvelinus fontinalis, Mitchill). Heredity (Edinb). 2013, 110: 492-500. 10.1038/hdy.2012.117.View ArticleGoogle Scholar
  74. Normandeau E, Hutchings J, Fraser DJ, Bernatchez L: Population-specific gene expression responses to hybridization between farm and wild Atlantic salmon. Evol Appl. 2009, 2: 489-503. 10.1111/j.1752-4571.2009.00074.x.PubMed CentralPubMedView ArticleGoogle Scholar

Copyright

© Bicskei et al.; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement