Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 2005, 309 (5740): 1577-1581. 10.1126/science.1113329.
Article
CAS
PubMed
Google Scholar
He Y, Tan SL, Tareen SU, Vijaysri S, Langland JO, Jacobs BL, Katze MG: Regulation of mRNA translation and cellular signaling by hepatitis C virus nonstructural protein NS5A. Journal of Virology. 2001, 75 (11): 5090-5098. 10.1128/JVI.75.11.5090-5098.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature. 2008, 455 (7209): 64-71. 10.1038/nature07242.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116 (2): 281-297. 10.1016/S0092-8674(04)00045-5.
Article
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.
Article
CAS
PubMed
Google Scholar
Yoon S, De Micheli G: Prediction of regulatory modules comprising microRNAs and target genes. Bioinformatics. 2005, 21 (suppl 2): ii93-ii100.
Article
CAS
PubMed
Google Scholar
Joung JG, Hwang KB, Nam JW, Kim SJ, Zhang BT: Discovery of microRNA-mRNA modules via population-based probabilistic learning. Bioinformatics. 2007, 23 (9): 1141-1147. 10.1093/bioinformatics/btm045.
Article
CAS
PubMed
Google Scholar
Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. Journal of Computational Biology. 2000, 7 (3-4): 601-620. 10.1089/106652700750050961.
Article
CAS
PubMed
Google Scholar
Liu B, Li J, Tsykin A: Discovery of functional miRNA-mRNA regulatory modules with computational methods. Journal of Biomedical Informatics. 2009, 42 (4): 685-10.1016/j.jbi.2009.01.005.
Article
CAS
PubMed
Google Scholar
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005, 433 (7027): 769-773. 10.1038/nature03315.
Article
CAS
PubMed
Google Scholar
Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proceedings of the National Academy of Sciences. 2008, 105 (5): 1608-1613. 10.1073/pnas.0707594105.
Article
CAS
Google Scholar
Ørom UA, Nielsen FC, Lund AH: MicroRNA-10a binds the 5' UTR of ribosomal protein mRNAs and enhances their translation. Molecular cell. 2008, 30 (4): 460-471. 10.1016/j.molcel.2008.05.001.
Article
PubMed
Google Scholar
Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, Rønneberg JA, Johnsen H, Navon R, Rødland E, et al: miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PloS One. 2011, 6 (2): e16915-10.1371/journal.pone.0016915.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S: Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Research. 2013, 41 (5): 2817-2831. 10.1093/nar/gks1471.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang S, Li Q, Liu J, Zhou XJ: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics. 2011, 27 (13): i401-i409. 10.1093/bioinformatics/btr206.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li Y, Liang C, Wong KC, Luo J, Zhang Z: Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion. Bioinformatics. 2014, btu373-
Chapter
Google Scholar
Le HS, Bar-Joseph Z: Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation. Bioinformatics. 2013, 29 (13): i89-i97. 10.1093/bioinformatics/btt231.
Article
PubMed Central
CAS
PubMed
Google Scholar
Friedman RC, Farh KKH, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Research. 2009, 19: 92-105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peng X, Li Y, Walters KA, Rosenzweig ER, Lederer SL, Aicher LD, Proll S, Katze MG: Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics. 2009, 10: 373-10.1186/1471-2164-10-373.
Article
PubMed Central
PubMed
Google Scholar
Jayaswal V, Lutherborrow M, Ma D, Yang Y: Identification of microRNA-mRNA modules using microarray data. BMC Genomics. 2011, 12: 138-10.1186/1471-2164-12-138.
Article
PubMed Central
CAS
PubMed
Google Scholar
Quinlan JR: C4. 5: programs for machine learning. 1993, Morgan Kaufmann, 1:
Google Scholar
Han J, Kamber M: Data mining: concepts and techniques. 2006, Morgan Kaufmann
Google Scholar
Weka 3.6 software package. [http://www.cs.waikato.ac.nz/ml/weka/]
Breu H, Gil J, Kirkpatrick D, Werman M: Linear time Euclidean distance transform algorithms. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1995, 17 (5): 529-533. 10.1109/34.391389.
Article
Google Scholar
West DB: Introduction to graph theory. 2001, Prentice hall Englewood Cliffs, 2:
Google Scholar
Katayama Y, Maeda M, Miyaguchi K, Nemoto S, Yasen M, Tanaka S, Mizushima H, Fukuoka Y, Arii S, Tanaka H: Identification of pathogenesis-related microRNAs in hepatocellular carcinoma by expression profiling. Oncology Letters. 2012, 4 (4): 817-
PubMed Central
CAS
PubMed
Google Scholar
Iizuka M, Ogawa T, Enomoto M, Motoyama H, Yoshizato K, Ikeda K, Kawada N: Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis Tissue Repair. 2012, 5: 12-10.1186/1755-1536-5-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang X, Daucher M, Armistead D, Russell R, Kottilil S: MicroRNA Expression Profiling in HCV-Infected Human Hepatoma Cells Identifies Potential Anti-Viral Targets Induced by Interferon-α. PLoS One. 2013, 8 (2): e55733-10.1371/journal.pone.0055733.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fukuda M: TBC proteins: GAPs for mammalian small GTPase Rab?. Bioscience Reports. 2011, 31: 159-168. 10.1042/BSR20100112.
Article
CAS
PubMed
Google Scholar
Sklan EH, Staschke K, Oakes TM, Elazar M, Winters M, Aroeti B, Danieli T, Glenn JS: A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. Journal of Virology. 2007, 81 (20): 11096-11105. 10.1128/JVI.01249-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L: Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 2011, 6 (8): e23937-10.1371/journal.pone.0023937.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clark PJ: Translational genomics, transcriptomics and metabolomics analyses of the metabolic effects of chronic hepatitis C infection and their clinical implications. PhD thesis. 2012, The University of New South Wales
Google Scholar
Brass AL, Huang I, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E: The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell. 2009, 139 (7): 1243-1254. 10.1016/j.cell.2009.12.017.
Article
PubMed Central
PubMed
Google Scholar
Xie HY, Cheng J, Xing CY, Wang JJ, Su R, Wei XY, Zhou L, Zheng SS: Evaluation of hepatitis B viral replication and proteomic analysis of HepG2. 2.15 cell line after knockdown of HBx. Hepatobiliary & Pancreatic Diseases International. 2011, 10 (3): 295-302. 10.1016/S1499-3872(11)60049-0.
Article
CAS
Google Scholar
Lu CY, Lin KY, Tien MT, Wu CT, Uen YH, Tseng TL: Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes, Chromosomes and Cancer. 2013, 42 (8): 1273-1281.
Google Scholar
Abdalla MA, Haj-Ahmad Y: Promising candidate urinary microRNA biomarkers for the early detection of hepatocellular carcinoma among high-risk hepatitis C virus Egyptian patients. Journal of Cancer. 2012, 3: 19-
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu X, Wang T, Wakita T, Yang W: Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology. 2010, 398: 57-67. 10.1016/j.virol.2009.11.036.
Article
CAS
PubMed
Google Scholar
Zhang Gl, Li Yx, Zheng Sq, Liu M, Li X, Tang H: Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antiviral Research. 2010, 88 (2): 169-175. 10.1016/j.antiviral.2010.08.008.
Article
CAS
PubMed
Google Scholar
Chen T, Zhu L, Zhou Y, Pi B, Liu X, Deng G, Zhang R, Wang Y, Wu Z, Han M: KCTD9 contributes to liver injury through NK cell activation during hepatitis B virus-induced acute-on-chronic liver failure. Clinical Immunology. 2013, 146 (3): 207-216. 10.1016/j.clim.2012.12.013.
Article
CAS
PubMed
Google Scholar
Lee SA, Ho C, Roy R, Kosinski C, Patil MA, Tward AD, Fridlyand J, Chen X: Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology. 2008, 47 (4): 1200-1210.
Article
CAS
PubMed
Google Scholar
Lupberger J, Brino L, Baumert TF: RNAi-A powerful tool to unravel hepatitis C virus-host interactions within the infectious life cycle. Journal of Hepatology. 2008, 48 (3): 523-525. 10.1016/j.jhep.2007.12.007.
Article
CAS
PubMed
Google Scholar
Xia H, Ooi LLP, Hui KM: miRNA-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One. 2012, 7 (9): e44206-10.1371/journal.pone.0044206.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong TS, Liu XB, Wong BYH, Ng RWM, Yuen APW, Wei WI: Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clinical Cancer Research. 2008, 14 (9): 2588-2592. 10.1158/1078-0432.CCR-07-0666.
Article
CAS
PubMed
Google Scholar
Wu J, Qian J, Li C, Kwok L, Cheng F, Liu P, Perdomo C, Kotton D, Vaziri C, Anderlind C: miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle. 2010, 9 (9): 1809-1818. 10.4161/cc.9.9.11535.
Article
CAS
PubMed
Google Scholar
Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008, 7 (16): 2591-2600. 10.4161/cc.7.16.6533.
Article
CAS
PubMed
Google Scholar
Bian Y, Wang L, Lu H, Yang G, Zhang Z, Fu H, Lu X, Wei M, Sun J, Zhao Q: Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis. Biochemical and Biophysical Research Communications. 2012, 422: 187-193. 10.1016/j.bbrc.2012.04.138.
Article
CAS
PubMed
Google Scholar
Liu SY, Chen YT, Tseng MY, Hung CC, Chiang WF, Chen HR, Shieh TY, Chen CH, Jou YS, Chen JYF: Involvement of microtubule-associated protein 2 (MAP2) in oral cancer cell motility: a novel biological function of MAP2 in non-neuronal cells. Biochemical and Biophysical Research Communications. 2008, 366 (2): 520-525. 10.1016/j.bbrc.2007.11.179.
Article
CAS
PubMed
Google Scholar
Chung KL: Markov chains. 1967, Springer
Book
Google Scholar
Marín RM, Vaníček J: Efficient use of accessibility in microRNA target prediction. Nucleic Acids Research. 2011, 39: 19-29. 10.1093/nar/gkq768.
Article
PubMed Central
PubMed
Google Scholar
Airaksinen MS, Saarma M: The GDNF family: signalling, biological functions and therapeutic value. Nature Reviews Neuroscience. 2002, 3 (5): 383-394. 10.1038/nrn812.
Article
CAS
PubMed
Google Scholar
Buj-Bello A, Adu J, Pinon L, Horton A, Thompson J, Rosenthal A, Chinchetru M, Buchman VL, Davies AM: Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature. 1997, 387 (6634): 721-10.1038/42729.
Article
CAS
PubMed
Google Scholar
Fábregas BC, de Miranda AS, Barbosa IG, Moura AS, Carmo RA, Teixeira AL: Brain-derived neurotrophic factor in patients with chronic hepatitis C: beyond neurotrophic support. Biological Psychiatry. 2012, 72 (4): e13-e14. 10.1016/j.biopsych.2012.02.036.
Article
PubMed
Google Scholar
Shan SW, Fang L, Shatseva T, Rutnam ZJ, Yang X, Du W, Lu WY, Xuan JW, Deng Z, Yang BB: Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. Journal of Cell Science. 2013, 126 (6): 1517-1530. 10.1242/jcs.122895.
Article
CAS
PubMed
Google Scholar
Liu L, An J, Liu J, Wen J, Zhai X, Liu Y, Pan S, Jiang J, Wen Y, Liu Z, et al: Potentially functional genetic variants in microRNA processing genes and risk of HBV-related hepatocellular carcinoma. Molecular Carcinogenesis. 2013, 52 (S1): 148-154. 10.1002/mc.22062.
Article
Google Scholar
Mas VR, Maluf DG, Stravitz R, Dumur CI, Clark B, Rodgers C, Ferreira-Gonzalez A, Fisher RA: Hepatocellular carcinoma in HCV-infected patients awaiting liver transplantation: Genes involved in tumor progression. Liver Transplantation. 2004, 10 (5): 607-620. 10.1002/lt.20118.
Article
PubMed
Google Scholar
Easow G, Teleman AA, Cohen SM: Isolation of microRNA targets by miRNP immunopurification. RNA. 2007, 13 (8): 1198-1204. 10.1261/rna.563707.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Y, Stallings RL: Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Research. 2007, 67 (3): 976-983. 10.1158/0008-5472.CAN-06-3667.
Article
CAS
PubMed
Google Scholar
miRTarbase database. [http://mirtarbase.mbc.nctu.edu.tw/php/search.php]
Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, et al: miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Research. 2014, 42 (D1): D78-D85. 10.1093/nar/gkt1266.
Article
PubMed Central
CAS
PubMed
Google Scholar
starBase database. [http://starbase.sysu.edu.cn/]
Li JH, Liu S, Zhou H, Qu LH, Yang JH: starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research. 2014, 42 (D1): D92-D97. 10.1093/nar/gkt1248.
Article
PubMed Central
CAS
PubMed
Google Scholar