Network CGA: Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490 (7418): 61-70. 10.1038/nature11412.
Google Scholar
Macaluso M, Montanari M, Giordano A: The regulation of ER-α transcription by pRb2/p130 in breast cancer. Annals of Oncology. 2005, 16 (suppl 4): iv20-iv22.
PubMed
Google Scholar
Siegel R, Ma J, Zou Z, Jemal A: Cancer statistics, 2014. CA: a cancer journal for clinicians. 2014, 64 (1): 9-29. 10.3322/caac.21208.
Google Scholar
Volinia S, Croce CM: Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proceedings of the National Academy of Sciences. 2013, 110 (18): 7413-7417. 10.1073/pnas.1304977110.
CAS
Google Scholar
Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Della Rosa PA, Gilardi MC, Castiglioni I: Integration of mRNA Expression Profile, Copy Number Alterations, and microRNA Expression Levels in Breast Cancer to Improve Grade Definition. PloS one. 2014, 9 (5): e97681-10.1371/journal.pone.0097681.
PubMed Central
PubMed
Google Scholar
Sengupta D, Bandyopadhyay S: Topological patterns in microRNA-gene regulatory network: studies in colorectal and breast cancer. Mol BioSyst. 2013, 9 (6): 1360-1371. 10.1039/c3mb25518b.
CAS
PubMed
Google Scholar
Qin S, Ma F, Chen L: Gene regulatory networks by transcription factors and microRNAs in breast cancer. Bioinformatics. 2014, 30 (1): 76-83. [http://bioinformatics.oxfordjournals.org/content/31/1/76]
Google Scholar
West J, Bianconi G, Severini S, Teschendorff AE: Differential network entropy reveals cancer system hallmarks. Scientific reports. 2012, 2: 802-
PubMed Central
PubMed
Google Scholar
Teschendorff AE, Severini S: Increased entropy of signal transduction in the cancer metastasis phenotype. BMC systems biology. 2010, 4 (1): 104-10.1186/1752-0509-4-104.
PubMed Central
PubMed
Google Scholar
Schramm G, Kannabiran N, König R: Regulation patterns in signaling networks of cancer. BMC systems biology. 2010, 4 (1): 162-10.1186/1752-0509-4-162.
PubMed Central
PubMed
Google Scholar
Tuck DP, Kluger HM, Kluger Y: Characterizing disease states from topological properties of transcriptional regulatory networks. BMC bioinformatics. 2006, 7 (1): 236-10.1186/1471-2105-7-236.
PubMed Central
PubMed
Google Scholar
Pujana MA, Han J-DJ, Starita LM, Stevens KN, Tewari M, Ahn JS, Rennert G, Moreno V, Kirchhoff T, Gold B: Network modeling links breast cancer susceptibility and centrosome dysfunction. Nature genetics. 2007, 39 (11): 1338-1349. 10.1038/ng.2007.2.
CAS
PubMed
Google Scholar
Platzer A, Perco P, Lukas A, Mayer B: Characterization of protein-interaction networks in tumors. BMC bioinformatics. 2007, 8 (1): 224-10.1186/1471-2105-8-224.
PubMed Central
PubMed
Google Scholar
Ulitsky I, Shamir R: Identification of functional modules using network topology and high-throughput data. BMC systems biology. 2007, 1 (1): 8-10.1186/1752-0509-1-8.
PubMed Central
PubMed
Google Scholar
Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Molecular systems biology. 2007, 3 (1):
Milanesi L, Romano P, Castellani G, Remondini D, Liò P: Trends in modeling biomedical complex systems. BMC bioinformatics. 2009, 10 (Suppl 12): I1-10.1186/1471-2105-10-S12-I1. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762057/]
PubMed Central
PubMed
Google Scholar
Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL: Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature biotechnology. 2009, 27 (2): 199-204. 10.1038/nbt.1522.
CAS
PubMed
Google Scholar
Hudson NJ, Reverter A, Dalrymple BP: A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS computational biology. 2009, 5 (5): e1000382-10.1371/journal.pcbi.1000382.
PubMed Central
PubMed
Google Scholar
Nibbe RK, Koyutürk M, Chance MR: An integrative-omics approach to identify functional sub-networks in human colorectal cancer. PLoS computational biology. 2010, 6 (1): e1000639-10.1371/journal.pcbi.1000639.
PubMed Central
PubMed
Google Scholar
Yao C, Li H, Zhou C, Zhang L, Zou J, Guo Z: Multi-level reproducibility of signature hubs in human interactome for breast cancer metastasis. BMC systems biology. 2010, 4 (1): 151-10.1186/1752-0509-4-151.
PubMed Central
PubMed
Google Scholar
Komurov K, White MA, Ram PT: Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data. PLoS computational biology. 2010, 6 (8): e1000889-10.1371/journal.pcbi.1000889.
PubMed Central
PubMed
Google Scholar
Komurov K, Ram PT: Patterns of human gene expression variance show strong associations with signaling network hierarchy. BMC systems biology. 2010, 4 (1): 154-10.1186/1752-0509-4-154.
PubMed Central
PubMed
Google Scholar
Vazquez A: Protein Interaction Networks In: Neuroproteomics. Edited by: AlzateO. 2010, CRC Press, Boca Raton, 135-145.
Olex AL, Turkett WH, Fetrow JS, Loeser RF: Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis. Gene. 2014, 542 (1): 38-45. 10.1016/j.gene.2014.03.022.
PubMed Central
CAS
PubMed
Google Scholar
Califano A: Rewiring makes the difference. Molecular Systems Biology. 2011, 7 (1):
Bandyopadhyay S, Mehta M, Kuo D, Sung M-K, Chuang R, Jaehnig EJ, Bodenmiller B, Licon K, Copeland W, Shales M: Rewiring of genetic networks in response to DNA damage. Science. 2010, 330 (6009): 1385-1389. 10.1126/science.1195618.
PubMed Central
CAS
PubMed
Google Scholar
Ideker T, Krogan NJ: Differential network biology. Molecular systems biology. 2012, 8 (1):
Tesson BM, Breitling R, Jansen RC: DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC bioinformatics. 2010, 11 (1): 497-10.1186/1471-2105-11-497.
PubMed Central
PubMed
Google Scholar
Zhang B, Tian Y, Jin L, Li H, Shih I-M, Madhavan S, Clarke R, Hoffman EP, Xuan J, Hilakivi-Clarke L: DDN: a caBIG® analytical tool for differential network analysis. Bioinformatics. 2011, 27 (7): 1036-1038. 10.1093/bioinformatics/btr052.
PubMed Central
CAS
PubMed
Google Scholar
TCGAPortal: Nationl Human Genome Research Institute. [https://tcga-data.nci.nih.gov/tcga/]
Akulenko R, Helms V: DNA co-methylation analysis suggests novel functional associations between gene pairs in breast cancer samples. Human molecular genetics. 2013, 22 (15): 3016-3022. 10.1093/hmg/ddt158.
CAS
PubMed
Google Scholar
Dreos R, Ambrosini G, Périer RC, Bucher P: EPD and EPDnew, high-quality promoter resources in the next-generation sequencing era. Nucleic acids research. 2013, 41 (D1): D157-D164. 10.1093/nar/gks1233.
PubMed Central
CAS
PubMed
Google Scholar
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP: Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011, 27 (12): 1739-1740. 10.1093/bioinformatics/btr260.
PubMed Central
CAS
PubMed
Google Scholar
Chu G, Li J, Narasimhan B, Tibshirani R, Tusher V: Significance Analysis of Microarrays Users Guide and Technical Document. 2001
Google Scholar
Hahne F, Huber W, Gentleman R, Falcon S: Bioconductor case studies. 2010, Springer
Google Scholar
Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L: Hierarchical organization of modularity in metabolic networks. science. 2002, 297 (5586): 1551-1555. 10.1126/science.1073374.
CAS
PubMed
Google Scholar
Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008, 9 (1): 559-10.1186/1471-2105-9-559.
PubMed Central
PubMed
Google Scholar
Ihaka R, Gentleman R: R: a language for data analysis and graphics. Journal of computational and graphical statistics. 1996, 5 (3): 299-314.
Google Scholar
Jiang C, Xuan Z, Zhao F, Zhang MQ: TRED: a transcriptional regulatory element database, new entries and other development. Nucleic acids research. 2007, 35 (suppl 1): D137-D140.
PubMed Central
CAS
PubMed
Google Scholar
Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic acids research. 2004, 32 (suppl 1): D91-D94.
PubMed Central
CAS
PubMed
Google Scholar
Marschall T, Rahmann S: Efficient exact motif discovery. Bioinformatics. 2009, 25 (12): i356-i364. 10.1093/bioinformatics/btp188.
PubMed Central
CAS
PubMed
Google Scholar
Friedman N, Nachman I, Peér D: Learning bayesian network structure from massive datasets: the «sparse candidate «algorithm. Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence: 1999. 1999, Morgan Kaufmann Publishers Inc., 206-215.
Google Scholar
Carvalho AM: Scoring functions for learning bayesian networks. Inesc-id Tec Rep. 2009
Google Scholar
Csardi G, Nepusz T: The igraph software package for complex network research. InterJournal, Complex Systems. 2006, 1695 (5):
Zeller C, Dai W, Steele N, Siddiq A, Walley A, Wilhelm-Benartzi C, Rizzo S, van der Zee A, Plumb J, Brown R: Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene. 2012, 31 (42): 4567-4576. 10.1038/onc.2011.611.
CAS
PubMed
Google Scholar
Laczny C, Leidinger P, Haas J, Ludwig N, Backes C, Gerasch A, Kaufmann M, Vogel B, Katus HA, Meder B: miRTrail-a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC bioinformatics. 2012, 13 (1): 36-10.1186/1471-2105-13-36.
PubMed Central
CAS
PubMed
Google Scholar
Wang J, Lu M, Qiu C, Cui Q: TransmiR: a transcription factor-microRNA regulation database. Nucleic acids research. 2010, 38 (suppl 1): D119-D122.
PubMed Central
CAS
PubMed
Google Scholar
Makhorin A: GLPK (GNU linear programming kit). 2008
Google Scholar
Kroshko D: OpenOpt. 2007, Software package downloadable from http://openopt.org
Google Scholar
Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research. 2011, 39 (suppl 1): D152-D157.
PubMed Central
CAS
PubMed
Google Scholar
Xia J, Han L, Zhao Z: Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC genomics. 2012, 13 (Suppl 8): S7-
PubMed Central
PubMed
Google Scholar
Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, Jones PA: Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic acids research. 2005, 33 (20): e176-e176. 10.1093/nar/gni180.
PubMed Central
PubMed
Google Scholar
Sander N, Abel GJ, Bauer R, Schmidt J: Visualising migration flow data with circular plots. 2014, Vienna Institute of Demography Working Papers
Google Scholar
Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW, Vogelstein B, Karchin R: Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer research. 2009, 69 (16): 6660-6667. 10.1158/0008-5472.CAN-09-1133.
PubMed Central
CAS
PubMed
Google Scholar
McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F: Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010, 26 (16): 2069-2070. 10.1093/bioinformatics/btq330.
PubMed Central
CAS
PubMed
Google Scholar
Ng PC, Henikoff S: SIFT: Predicting amino acid changes that affect protein function. Nucleic acids research. 2003, 31 (13): 3812-3814. 10.1093/nar/gkg509.
PubMed Central
CAS
PubMed
Google Scholar
Kumar P, Henikoff S, Ng PC: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols. 2009, 4 (7): 1073-1081.
CAS
PubMed
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR: A method and server for predicting damaging missense mutations. Nature methods. 2010, 7 (4): 248-249. 10.1038/nmeth0410-248.
PubMed Central
CAS
PubMed
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome biol. 2003, 4 (5): P3-10.1186/gb-2003-4-5-p3.
PubMed
Google Scholar
Hamed M, Ismael S, Paulsen M, Helms V: Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology. PloS one. 2012, 7 (11): e50285-10.1371/journal.pone.0050285.
PubMed Central
CAS
PubMed
Google Scholar
Lu M, Shi B, Wang J, Cao Q, Cui Q: TAM: a method for enrichment and depletion analysis of a microRNA category in a list of microRNAs. BMC bioinformatics. 2010, 11 (1): 419-10.1186/1471-2105-11-419.
PubMed Central
PubMed
Google Scholar
Hewett M, Oliver DE, Rubin DL, Easton KL, Stuart JM, Altman RB, Klein TE: PharmGKB: the pharmacogenetics knowledge base. Nucleic acids research. 2002, 30 (1): 163-165. 10.1093/nar/30.1.163.
PubMed Central
CAS
PubMed
Google Scholar
Davis A, Murphy C, Johnson R, Lay J, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King B, Rosenstein M, Wiegers T: CTD-Comparative Toxicogenomics Database. [http://nar.oxfordjournals.org/content/early/2014/10/17/nar.gku935.fu]
Ahmed J, Meinel T, Dunkel M, Murgueitio MS, Adams R, Blasse C, Eckert A, Preissner S, Preissner R: CancerResource: a comprehensive database of cancer-relevant proteins and compound interactions supported by experimental knowledge. Nucleic acids research. 2011, 39 (suppl 1): D960-D967.
PubMed Central
CAS
PubMed
Google Scholar
Jones ME, van Leeuwen FE, Hoogendoorn WE, Mourits MJ, Hollema H, van Boven H, Press MF, Bernstein L, Swerdlow AJ: Endometrial cancer survival after breast cancer in relation to tamoxifen treatment: pooled results from three countries. Breast Cancer Res. 2012, 14 (3): R91-10.1186/bcr3206.
PubMed Central
CAS
PubMed
Google Scholar
Gasco M, Shami S, Crook T: The p53 pathway in breast cancer. Breast Cancer Research. 2002, 4 (2): 70-10.1186/bcr426.
PubMed Central
CAS
PubMed
Google Scholar
Walerych D, Napoli M, Collavin L, Del Sal G: The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 2012, 33 (11): 2007-2017. 10.1093/carcin/bgs232.
PubMed Central
CAS
PubMed
Google Scholar
Lacroix M, Toillon R-A, Leclercq G: p53 and breast cancer, an update. Endocrine-related cancer. 2006, 13 (2): 293-325. 10.1677/erc.1.01172.
CAS
PubMed
Google Scholar
Turner N, Moretti E, Siclari O, Migliaccio I, Santarpia L, D'Incalci M, Piccolo S, Veronesi A, Zambelli A, Del Sal G: Targeting triple negative breast cancer: Is p53 the answer?. Cancer treatment reviews. 2013, 39 (5): 541-550. 10.1016/j.ctrv.2012.12.001.
CAS
PubMed
Google Scholar
Scata KA, El-Deiry WS: p53, BRCA1 and breast Cancer chemoresistance. Adv Exp Med Biol. 2007, Springer, 70-86.
Google Scholar
Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q: An analysis of human microRNA and disease associations. PloS one. 2008, 3 (10): e3420-10.1371/journal.pone.0003420.
PubMed Central
PubMed
Google Scholar
Slyper M, Shahar A, Bar-Ziv A, Granit RZ, Hamburger T, Maly B, Peretz T, Ben-Porath I: Control of Breast Cancer Growth and Initiation by the Stem Cell-Associated Transcription Factor TCF3. Cancer research. 2012, 72 (21): 5613-5624. 10.1158/0008-5472.CAN-12-0119.
CAS
PubMed
Google Scholar
Chhabra A, Fernando H, Watkins G, Mansel RE, Jiang WG: Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncology reports. 2007, 18 (4): 953-958.
CAS
PubMed
Google Scholar
Haakenson JK, Kester M, Liu DX: The ATF/CREB family of transcription factors in breast cancer. Targeting New Pathways and Cell Death in Breast Cancer In: Aft RL. 2012, intech, 71-85. [http://www.intechopen.com/books/howtoreference/targeting-new-pathways-and-cell-death-in-breast-cancer/the-atf-creb-family-of-transcription-factors-in-breast-cancer]
Google Scholar
Dong L, Wang W, Wang F, Stoner M, Reed JC, Harigai M, Samudio I, Kladde MP, Vyhlidal C, Safe S: Mechanisms of transcriptional activation of bcl-2gene expression by 17β-estradiol in breast cancer cells. Journal of Biological Chemistry. 1999, 274 (45): 32099-32107. 10.1074/jbc.274.45.32099.
CAS
PubMed
Google Scholar
Zhang S, Chen L, Cui B, Chuang H-Y, Yu J, Wang-Rodriguez J, Tang L, Chen G, Basak GW, Kipps TJ: ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PloS one. 2012, 7 (3): e31127-10.1371/journal.pone.0031127.
PubMed Central
CAS
PubMed
Google Scholar
Xiao X, Li B, Mitton B, Ikeda A, Sakamoto K: Targeting CREB for cancer therapy: friend or foe. Current cancer drug targets. 2010, 10 (4): 384-391. 10.2174/156800910791208535.
PubMed Central
CAS
PubMed
Google Scholar
Sakamoto KM, Frank DA: CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clinical Cancer Research. 2009, 15 (8): 2583-2587. 10.1158/1078-0432.CCR-08-1137.
PubMed Central
CAS
PubMed
Google Scholar
Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS: A census of amplified and overexpressed human cancer genes. Nature Reviews Cancer. 2010, 10 (1): 59-64. 10.1038/nrc2771.
CAS
PubMed
Google Scholar
Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA: E2f3 is critical for normal cellular proliferation. Genes & development. 2000, 14 (6): 690-703.
CAS
Google Scholar
Reyes A: The Role of E2F3 in the Macrophage Assisted Metastasis of Breast Cancer. 2007
Google Scholar
Vimala K, Sundarraj S, Sujitha MV, Kannan S: Curtailing Overexpression of E2F3 in Breast Cancer Using siRNA (E2F3)-Based Gene Silencing. Archives of medical research. 2012, 43 (6): 415-422. 10.1016/j.arcmed.2012.08.009.
CAS
PubMed
Google Scholar
Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, Laurberg S, Sørensen FB, Hagemann R, Ørntoft TF: Gene expression in colorectal cancer. Cancer Research. 2002, 62 (15): 4352-4363.
CAS
PubMed
Google Scholar
Ma X-J, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM: Gene expression profiles of human breast cancer progression. Proceedings of the National Academy of Sciences. 2003, 100 (10): 5974-5979. 10.1073/pnas.0931261100.
CAS
Google Scholar
Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J: Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene. 2004, 23 (7): 1377-1391. 10.1038/sj.onc.1207262.
CAS
PubMed
Google Scholar
Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez M, Elledge R, Mohsin S, Osborne CK, Chamness GC, Allred DC: Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. The Lancet. 2003, 362 (9381): 362-369. 10.1016/S0140-6736(03)14023-8.
CAS
Google Scholar
Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson JR, Elkahloun AG: In vivo gene expression profile analysis of human breast cancer progression. Cancer research. 1999, 59 (22): 5656-5661.
CAS
PubMed
Google Scholar
Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED, Mathé EA, Takenoshita S, Yokota J, Haugen A: The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clinical cancer research. 2011, 17 (7): 1875-1882. 10.1158/1078-0432.CCR-10-2961.
PubMed Central
CAS
PubMed
Google Scholar
Yang L, Belaguli N, Berger DH: MicroRNA and colorectal cancer. World journal of surgery. 2009, 33 (4): 638-646. 10.1007/s00268-008-9865-5.
PubMed
Google Scholar
Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J: Prognostic values of microRNAs in colorectal cancer. Biomarker insights. 2006, 1: 113-
PubMed Central
Google Scholar
Keller A, Leidinger P, Bauer A, ElSharawy A, Haas J, Backes C, Wendschlag A, Giese N, Tjaden C, Ott K: Toward the blood-borne miRNome of human diseases. nature methods. 2011, 8 (10): 841-843. 10.1038/nmeth.1682.
CAS
PubMed
Google Scholar
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic acids research. 2010, gkq929
Google Scholar
Tian Y, Zhang B, Shih I-M, Wang Y: Knowledge-guided differential dependency network learning for detecting structural changes in biological networks. Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine: 2011. 2011, ACM, 254-263.
Google Scholar