Hoffmann JA: The immune response of Drosophila. Nature. 2003, 426 (6962): 33-38. 10.1038/nature02021.
PubMed
CAS
Google Scholar
Lavine MD, Strand MR: Insect hemocytes and their role in immunity. Insect Biochem Mol Biol. 2002, 32 (10): 1295-1309. 10.1016/S0965-1748(02)00092-9.
PubMed
CAS
Google Scholar
Hoffmann JA: Innate immunity of insects. Curr Opin Immunol. 1995, 7 (1): 4-10. 10.1016/0952-7915(95)80022-0.
PubMed
CAS
Google Scholar
Hultmark D: Drosophila immunity: paths and patterns. Curr Opin Immunol. 2003, 15 (1): 12-19. 10.1016/S0952-7915(02)00005-5.
PubMed
CAS
Google Scholar
Kanost MR, Jiang H, Yu XQ: Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev. 2004, 198: 97-105. 10.1111/j.0105-2896.2004.0121.x.
PubMed
CAS
Google Scholar
Leclerc V, Reichhart JM: The immune response of Drosophila melanogaster. Immunol Rev. 2004, 198: 59-71. 10.1111/j.0105-2896.2004.0130.x.
PubMed
CAS
Google Scholar
Gillespie JP, Kanost MR, Trenczek T: Biological mediators of insect immunity. Annu Rev Entomol. 1997, 42: 611-643. 10.1146/annurev.ento.42.1.611.
PubMed
CAS
Google Scholar
Dostert C, Jouanguy E, Irving P, Troxler L, Galiana-Arnoux D, Hetru C, Hoffmann JA, Imler JL: The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat Immunol. 2005, 6 (9): 946-953. 10.1038/ni1237.
PubMed
CAS
Google Scholar
Roxstrom-Lindquist K, Terenius O, Faye I: Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO Rep. 2004, 5 (2): 207-212. 10.1038/sj.embor.7400073.
PubMed
PubMed Central
Google Scholar
Zambon RA, Nandakumar M, Vakharia VN, Wu LP: The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci U S A. 2005, 102 (20): 7257-7262. 10.1073/pnas.0409181102.
PubMed
CAS
PubMed Central
Google Scholar
Furukawa S, Tanaka H, Nakazawa H, Ishibashi J, Shono T, Yamakawa M: Inducible gene expression of moricin, a unique antibacterial peptide from the silkworm (Bombyx mori). Biochem J. 1999, 340 (Pt 1): 265-271. 10.1042/0264-6021:3400265.
PubMed
CAS
PubMed Central
Google Scholar
Volkoff AN, Rocher J, d'Alencon E, Bouton M, Landais I, Quesada-Moraga E, Vey A, Fournier P, Mita K, Devauchelle G: Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects?. Gene. 2003, 319: 43-53. 10.1016/S0378-1119(03)00789-3.
PubMed
CAS
Google Scholar
Yamakawa M, Tanaka H: Immune proteins and their gene expression in the silkworm, Bombyx mori. Dev Comp Immunol. 1999, 23 (4–5): 281-289. 10.1016/S0145-305X(99)00011-7.
PubMed
CAS
Google Scholar
Lavine MD, Chen G, Strand MR: Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem Mol Biol. 2005, 35 (12): 1335-1346. 10.1016/j.ibmb.2005.08.005.
PubMed
CAS
Google Scholar
Yu XQ, Zhu YF, Ma C, Fabrick JA, Kanost MR: Pattern recognition proteins in Manduca sexta plasma. Insect Biochem Mol Biol. 2002, 32 (10): 1287-1293. 10.1016/S0965-1748(02)00091-7.
PubMed
CAS
Google Scholar
Popham HJ, Shelby KS, Brandt SL, Coudron TA: Potent virucidal activity in larval Heliothis virescens plasma against Helicoverpa zea single capsid nucleopolyhedrovirus. J Gen Virol. 2004, 85 (Pt 8): 2255-2261. 10.1099/vir.0.79965-0.
PubMed
CAS
Google Scholar
Hirai M, Terenius O, Li W, Faye I: Baculovirus and dsRNA induce Hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Mol Biol. 2004, 13 (4): 399-405. 10.1111/j.0962-1075.2004.00497.x.
PubMed
CAS
Google Scholar
Washburn JO, Haas-Stapleton EJ, Tan FF, Beckage NE, Volkman LE: Co-infection of Manduca sexta larvae with polydnavirus from Cotesia congregata increases susceptibility to fatal infection by Autographa californica M Nucleopolyhedrovirus. J Insect Physiol. 2000, 46 (2): 179-190. 10.1016/S0022-1910(99)00115-8.
PubMed
CAS
Google Scholar
Lavine MD, Strand MR: Haemocytes from Pseudoplusia includens express multiple alpha and beta integrin subunits. Insect Mol Biol. 2003, 12 (5): 441-452. 10.1046/j.1365-2583.2003.00428.x.
PubMed
CAS
Google Scholar
Nardi JB, Zhuang S, Pilas B, Bee CM, Kanost MR: Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces. Journal Insect Physiology. 2005, 51 (5): 555-564. 10.1016/j.jinsphys.2005.02.005.
CAS
Google Scholar
Pech LL, Strand MR: Plasmatocytes from the moth Pseudoplusia includens induce apoptosis of granular cells. J Insect Physiol. 2000, 46 (12): 1565-1573. 10.1016/S0022-1910(00)00083-4.
PubMed
CAS
Google Scholar
Schmidt O, Theopold U, Strand M: Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays. 2001, 23 (4): 344-351. 10.1002/bies.1049.
PubMed
CAS
Google Scholar
Ribeiro C, Brehelin M: Insect haemocytes: What type of cell is that?. J Insect Physiol. 2006, 52 (5): 417-429. 10.1016/j.jinsphys.2006.01.005.
PubMed
CAS
Google Scholar
Glatz RV, Asgari S, Schmidt O: Evolution of polydnaviruses as insect immune suppressors. Trends Microbiol. 2004, 12 (12): 545-554. 10.1016/j.tim.2004.10.004.
PubMed
CAS
Google Scholar
Labrosse C, Carton Y, Dubuffet A, Drezen JM, Poirie M: Active suppression of D. melanogaster immune response by long gland products of the parasitic wasp Leptopilina boulardi. J Insect Physiol. 2003, 49 (5): 513-522. 10.1016/S0022-1910(03)00054-4.
PubMed
CAS
Google Scholar
Labrosse C, Eslin P, Doury G, Drezen JM, Poirie M: Haemocyte changes in D. melanogaster in response to long gland components of the parasitoid wasp Leptopilina boulardi: a Rho-GAP protein as an important factor. J Insect Physiol. 2005, 51 (2): 161-170. 10.1016/j.jinsphys.2004.10.004.
PubMed
CAS
Google Scholar
Labrosse C, Stasiak K, Lesobre J, Grangeia A, Huguet E, Drezen JM, Poirie M: A RhoGAP protein as a main immune suppressive factor in the Leptopilina boulardi (Hymenoptera, Figitidae)-Drosophila melanogaster interaction. Insect Biochem Mol Biol. 2005, 35 (2): 93-103. 10.1016/j.ibmb.2004.10.004.
PubMed
CAS
Google Scholar
Pennacchio F, Strand MR: Evolution of developmental strategies in parasitic hymenoptera. Annu Rev Entomol. 2006, 51: 233-258. 10.1146/annurev.ento.51.110104.151029.
PubMed
CAS
Google Scholar
Volkoff AN, Ravallec M, Bossy JP, Cerutti P, Rocher J, Cerutti M, Devauchelle G: The replication of Hyposoter didymator polydnavirus: Cytopathology of the calyx cells in the parasitoid. Biology of the Cell. 1995, 83: 1-13. 10.1016/0248-4900(96)89926-6.
Google Scholar
Galibert L, Rocher J, Ravallec M, Duonor-Cerutti M, Webb BA, Volkoff AN: Two Hyposoter didymator ichnovirus genes expressed in the lepidopteran host encode secreted or membrane-associated serine and threonine rich proteins in segments that may be nested. J Insect Physiol. 2003, 49 (5): 441-451. 10.1016/S0022-1910(03)00061-1.
PubMed
CAS
Google Scholar
Volkoff AN, Beliveau C, Rocher J, Hilgarth R, Levasseur A, Duonor-Cerutti M, Cusson M, Webb BA: Evidence for a conserved polydnavirus gene family: ichnovirus homologs of the CsIV repeat element genes. Virology. 2002, 300 (2): 316-331. 10.1006/viro.2002.1535.
PubMed
CAS
Google Scholar
Volkoff AN, Cerutti P, Rocher J, Ohresser MC, Devauchelle G, Duonor-Cerutti M: Related RNAs in lepidopteran cells after in vitro infection with Hyposoter didymator virus define a new polydnavirus gene family. Virology. 1999, 263 (2): 349-363. 10.1006/viro.1999.9929.
PubMed
CAS
Google Scholar
Volkoff AN, Rocher J, Cerutti P, Ohresser MC, d'Aubenton-Carafa Y, Devauchelle G, Duonor-Cerutti M: Persistent expression of a newly characterized Hyposoter didymator polydnavirus gene in long-term infected lepidopteran cell lines. J Gen Virol. 2001, 82 (Pt 4): 963-969.
PubMed
CAS
Google Scholar
Amaya KE, Asgari S, Jung R, Hongskula M, Beckage NE: Parasitization of Manduca sexta larvae by the parasitoid wasp Cotesia congregata induces an impaired host immune response. J Insect Physiol. 2005, 51 (5): 505-512. 10.1016/j.jinsphys.2004.11.019.
PubMed
CAS
Google Scholar
Turnbull MW, Martin SB, Webb BA: Quantitative analysis of hemocyte morphological abnormalities associated with Campoletis sonorensis parasitization. J Insect Sci. 2004, 4: 11-
PubMed
PubMed Central
Google Scholar
Asgari S: Venom proteins from polydnavirus-producing endoparasitoids: their role in host-parasite interactions. Arch Insect Biochem Physiol. 2006, 61 (3): 146-156. 10.1002/arch.20109.
PubMed
CAS
Google Scholar
Bae S, Kim Y: Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp Biochem Physiol A Mol Integr Physiol. 2004, 138 (1): 39-44. 10.1016/j.cbpb.2004.02.018.
PubMed
Google Scholar
Beckage NE: Modulation of immune responses to parasitoids by polydnaviruses. Parasitology. 1998, 116 (Suppl): S57-64.
PubMed
Google Scholar
Shelby KS, Adeyeye OA, Okot-Kotber BM, Webb BA: Parasitism-linked block of host plasma melanization. J Invertebr Pathol. 2000, 75 (3): 218-225. 10.1006/jipa.2000.4925.
PubMed
CAS
Google Scholar
Shelby KS, Webb BA: Polydnavirus-mediated suppression of insect immunity. J Insect Physiol. 1999, 45 (5): 507-514. 10.1016/S0022-1910(98)00144-9.
PubMed
CAS
Google Scholar
Stoltz DB, Cook DI: Inhibition of host phenoloxydase activity by parasitoid hymenoptera. Experientia. 1983, 39: 1022-1024. 10.1007/BF01989783.
CAS
Google Scholar
Cerenius L, Soderhall K: The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004, 198: 116-126. 10.1111/j.0105-2896.2004.00116.x.
PubMed
CAS
Google Scholar
Espagne E, Dupuy C, Huguet E, Cattolico L, Provost B, Martins N, Poirie M, Periquet G, Drezen JM: Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science. 2004, 306 (5694): 286-289. 10.1126/science.1103066.
PubMed
CAS
Google Scholar
Kroemer JA, Webb BA: Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annu Rev Entomol. 2004, 49: 431-456. 10.1146/annurev.ento.49.072103.120132.
PubMed
CAS
Google Scholar
Webb BA, Strand MR, Dickey SE, Beck MH, Hilgarth RS, Barney WE, Kadash K, Kroemer JA, Lindstrom KG, Rattanadechakul W, Shelby KS, Thoetkiattikul H, Turnbull MW, Witherell RA: Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology. 2006, 347 (1): 160-174. 10.1016/j.virol.2005.11.010.
PubMed
CAS
Google Scholar
Kroemer JA, Webb BA: Ikappabeta-related vankyrin genes in the Campoletis sonorensis ichnovirus: temporal and tissue-specific patterns of expression in parasitized Heliothis virescens lepidopteran hosts. J Virol. 2005, 79 (12): 7617-7628. 10.1128/JVI.79.12.7617-7628.2005.
PubMed
CAS
PubMed Central
Google Scholar
Thoetkiattikul H, Beck MH, Strand MR: Inhibitor kappaB-like proteins from a polydnavirus inhibit NF-kappaB activation and suppress the insect immune response. Proc Natl Acad Sci U S A. 2005, 102 (32): 11426-11431. 10.1073/pnas.0505240102.
PubMed
CAS
PubMed Central
Google Scholar
Turnbull MW, Volkoff AN, Webb BA, Phelan P: Functional gap junction genes are encoded by insect viruses. Curr Biol. 2005, 15 (13): R491-492. 10.1016/j.cub.2005.06.052.
PubMed
CAS
Google Scholar
Asgari S, Schmidt O: Isolation of an imaginal disc growth factor homologue from Pieris rapae and its expression following parasitization by Cotesia rubecula. J Insect Physiol. 2004, 50 (8): 687-694. 10.1016/j.jinsphys.2004.05.003.
PubMed
CAS
Google Scholar
Consoli FL, Brandt SL, Coudron TA, Vinson SB: Host regulation and release of parasitism-specific proteins in the system Toxoneuron nigriceps-Heliothis virescens. Comp Biochem Physiol B Biochem Mol Biol. 2005, 142 (2): 181-191. 10.1016/j.cbpc.2005.07.002.
PubMed
CAS
Google Scholar
Dong K, Zhang D, Dahlman DL: Down-regulation of juvenile hormone esterase and arylphorin production in Heliothis virescens larvae parasitized by Microplitis croceipes. Archives of Insect Biochemistry and Physiology. 1996, 32 (2): 237-248. 10.1002/(SICI)1520-6327(1996)32:2<237::AID-ARCH7>3.0.CO;2-V.
CAS
Google Scholar
Kim Y: Identification of host translation inhibitory factor of Campoletis sonorensis ichnovirus on the tobacco budworm, Heliothis virescens. Arch Insect Biochem Physiol. 2005, 59 (4): 230-244. 10.1002/arch.20074.
PubMed
CAS
Google Scholar
Shelby KS, Cui L, Webb BA: Polydnavirus-mediated inhibition of lysozyme gene expression and the antibacterial response. Insect Mol Biol. 1998, 7 (3): 265-272. 10.1111/j.1365-2583.1998.00071.x.
PubMed
CAS
Google Scholar
Shelby KS, Webb BA: Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin. J Gen Virol. 1994, 75 (Pt 9): 2285-2292.
PubMed
CAS
Google Scholar
Shelby KS, Webb BA: Polydnavirus infection inhibits translation of specific growth-associated host proteins. Insect Biochem Mol Biol. 1997, 27 (3): 263-270. 10.1016/S0965-1748(96)00095-1.
PubMed
CAS
Google Scholar
De Gregorio E, Spellman PT, Rubin GM, Lemaitre B: Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A. 2001, 98 (22): 12590-12595. 10.1073/pnas.221458698.
PubMed
CAS
PubMed Central
Google Scholar
Johansson KC, Metzendorf C, Soderhall K: Microarray analysis of immune challenged Drosophila hemocytes. Exp Cell Res. 2005, 305 (1): 145-155. 10.1016/j.yexcr.2004.12.018.
PubMed
CAS
Google Scholar
Aguilar R, Jedlicka AE, Mintz M, Mahairaki V, Scott AL, Dimopoulos G: Global gene expression analysis of Anopheles gambiae responses to microbial challenge. Insect Biochem Mol Biol. 2005, 35 (7): 709-719. 10.1016/j.ibmb.2005.02.019.
PubMed
CAS
Google Scholar
Wertheim B, Kraaijeveld AR, Schuster E, Blanc E, Hopkins M, Pletcher SD, Strand MR, Partridge L, Godfray HC: Genome-wide gene expression in response to parasitoid attack in Drosophila. Genome Biol. 2005, 6 (11): R94-10.1186/gb-2005-6-11-r94.
PubMed
PubMed Central
Google Scholar
Dimopoulos G, Christophides GK, Meister S, Schultz J, White KP, Barillas-Mury C, Kafatos FC: Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci U S A. 2002, 99 (13): 8814-8819. 10.1073/pnas.092274999.
PubMed
CAS
PubMed Central
Google Scholar
[http://bioweb.ensam.inra.fr/spodobase/]
Bergoin M, Tijssen P: Biological and molecular properties of Densoviruses and their use in protein expression and biological control. 1998, Plenum Press, New-York and London;
Google Scholar
Bachali S, Jager M, Hassanin A, Schoentgen F, Jolles P, Fiala-Medioni A, Deutsch JS: Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J Mol Evol. 2002, 54 (5): 652-664. 10.1007/s00239-001-0061-6.
PubMed
CAS
Google Scholar
Gorman MJ, Kankanala P, Kanost MR: Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs. Insect Mol Biol. 2004, 13 (1): 19-24. 10.1111/j.1365-2583.2004.00454.x.
PubMed
CAS
Google Scholar
Sun SC, Asling B, Faye I: Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J Biol Chem. 1991, 266 (10): 6644-6649.
PubMed
CAS
Google Scholar
Jiang H, Wang Y, Kanost MR: Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc Natl Acad Sci U S A. 1998, 95 (21): 12220-12225. 10.1073/pnas.95.21.12220.
PubMed
CAS
PubMed Central
Google Scholar
Jiang H, Kanost MR: The clip-domain family of serine proteinases in arthropods. Insect Biochem Mol Biol. 2000, 30 (2): 95-105. 10.1016/S0965-1748(99)00113-7.
PubMed
CAS
Google Scholar
Zou Z, Wang Y, Jiang H: Manduca sexta prophenoloxidase activating proteinase-1 (PAP-1) gene: organization, expression, and regulation by immune and hormonal signals. Insect Biochem Mol Biol. 2005, 35 (6): 627-636. 10.1016/j.ibmb.2005.02.004.
PubMed
CAS
PubMed Central
Google Scholar
Yu XQ, Kanost MR: Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria. J Biol Chem. 2000, 275 (48): 37373-37381. 10.1074/jbc.M003021200.
PubMed
CAS
Google Scholar
Koizumi N, Imamura M, Kadotani T, Yaoi K, Iwahana H, Sato R: The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains. FEBS Lett. 1999, 443 (2): 139-143. 10.1016/S0014-5793(98)01701-3.
PubMed
CAS
Google Scholar
Ling E, Yu XQ: Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta. Dev Comp Immunol. 2006, 30 (3): 289-299. 10.1016/j.dci.2005.05.005.
PubMed
CAS
Google Scholar
Yu XQ, Tracy ME, Ling E, Scholz FR, Trenczek T: A novel C-type immulectin-3 from Manduca sexta is translocated from hemolymph into the cytoplasm of hemocytes. Insect Biochem Mol Biol. 2005, 35 (4): 285-295. 10.1016/j.ibmb.2005.01.004.
PubMed
CAS
Google Scholar
Zhu Y, Johnson TJ, Myers AA, Kanost MR: Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochem Mol Biol. 2003, 33 (5): 541-559. 10.1016/S0965-1748(03)00028-6.
PubMed
CAS
Google Scholar
Nakhasi HL, Pogue GP, Duncan RC, Joshi M, Atreya CD, Lee NS, Dwyer DM: Implications of calreticulin function in parasite biology. Parasitology Today. 1998, 14 (4): 157-160. 10.1016/S0169-4758(97)01180-0.
PubMed
CAS
Google Scholar
Gelebart P, Opas M, Michalak M: Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol. 2005, 37 (2): 260-266. 10.1016/j.biocel.2004.02.030.
PubMed
CAS
Google Scholar
Johnson S, Michalak M, Opas M, Eggleton P: The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol. 2001, 11 (3): 122-129. 10.1016/S0962-8924(01)01926-2.
PubMed
CAS
Google Scholar
Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM: Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005, 123 (2): 321-334. 10.1016/j.cell.2005.08.032.
PubMed
CAS
Google Scholar
Choi JY, Whitten MM, Cho MY, Lee KY, Kim MS, Ratcliffe NA, Lee BL: Calreticulin enriched as an early-stage encapsulation protein in wax moth Galleria mellonella larvae. Dev Comp Immunol. 2002, 26 (4): 335-343. 10.1016/S0145-305X(01)00081-7.
PubMed
CAS
Google Scholar
Asgari S, Schmidt O: Is cell surface calreticulin involved in phagocytosis by insect hemocytes?. J Insect Physiol. 2003, 49 (6): 545-550. 10.1016/S0022-1910(03)00025-8.
PubMed
CAS
Google Scholar
Zhang G, Schmidt O, Asgari S: A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation. Dev Comp Immunol. 2005
Google Scholar
Ramet M, Pearson A, Manfruelli P, Li X, Koziel H, Gobel V, Chung E, Krieger M, Ezekowitz RA: Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity. 2001, 15 (6): 1027-1038. 10.1016/S1074-7613(01)00249-7.
PubMed
CAS
Google Scholar
Costa SC, Ribeiro C, Girard PA, Zumbihl R, Brehelin M: Modes of phagocytosis of Gram-positive and Gram-negative bacteria by Spodoptera littoralis granular haemocytes. J Insect Physiol. 2005, 51 (1): 39-46. 10.1016/j.jinsphys.2004.10.014.
PubMed
CAS
Google Scholar
Lazzaro BP: Elevated polymorphism and divergence in the class C scavenger receptors of Drosophila melanogaster and D. simulans. Genetics. 2005, 169 (4): 2023-2034. 10.1534/genetics.104.034249.
PubMed
CAS
PubMed Central
Google Scholar
Niki I, Yokokura H, Sudo T, Kato M, Hidaka H: Ca2+ signaling and intracellular Ca2+ binding proteins. J Biochem (Tokyo). 1996, 120 (4): 685-698.
CAS
Google Scholar
Kotani E, Yamakawa M, Iwamoto S, Tashiro M, Mori H, Sumida M, Matsubara F, Taniai K, Kadono-Okuda K, Kato Y, Mori H: Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim Biophys Acta. 1995, 1260 (3): 245-258.
PubMed
Google Scholar
Cooper DN: Galectinomics: finding themes in complexity. Biochim Biophys Acta. 2002, 1572 (2–3): 209-231.
PubMed
CAS
Google Scholar
Hughes RC: Galectins as modulators of cell adhesion. Biochimie. 2001, 83 (7): 667-676. 10.1016/S0300-9084(01)01289-5.
PubMed
CAS
Google Scholar
Liu FT, Patterson RJ, Wang JL: Intracellular functions of galectins. Biochim Biophys Acta. 2002, 1572 (2–3): 263-273.
PubMed
CAS
Google Scholar
Pace KE, Baum LG: Insect galectins: roles in immunity and development. Glycoconj J. 2004, 19 (7–9): 607-614.
PubMed
Google Scholar
Christophides GK, Vlachou D, Kafatos FC: Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol Rev. 2004, 198: 127-148. 10.1111/j.0105-2896.2004.0127.x.
PubMed
CAS
Google Scholar
Lavine MD, Beckage NE: Polydnaviruses: potent mediators of host insect immune dysfunction. Parasitol Today. 1995, 11 (10): 368-378. 10.1016/0169-4758(95)80005-0.
PubMed
CAS
Google Scholar
Le NT, Asgari S, Amaya K, Tan FF, Beckage NE: Persistence and expression of Cotesia congregata polydnavirus in host larvae of the tobacco hornworm, Manduca sexta. J Insect Physiol. 2003, 49 (5): 533-543. 10.1016/S0022-1910(03)00052-0.
PubMed
CAS
Google Scholar
Leclerc V, Pelte N, El Chamy L, Martinelli C, Ligoxygakis P, Hoffmann JA, Reichhart JM: Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep. 2006, 7 (2): 231-235. 10.1038/sj.embor.7400592.
PubMed
CAS
PubMed Central
Google Scholar
Huang LH, Christensen BM, Chen CC: Molecular cloning of a second prophenoloxidase cDNA from the mosquito Armigeres subalbatus: prophenoloxidase expression in blood-fed and microfilariae-inoculated mosquitoes. Insect Mol Biol. 2001, 10 (1): 87-96. 10.1046/j.1365-2583.2001.00241.x.
PubMed
CAS
Google Scholar
Rajagopal R, Thamilarasi K, Venkatesh GR, Srinivas P, Bhatnagar RK: Immune cascade of Spodoptera litura: cloning, expression, and characterization of inducible prophenol oxidase. Biochem Biophys Res Commun. 2005, 337 (1): 394-400. 10.1016/j.bbrc.2005.09.057.
PubMed
CAS
Google Scholar
Strand MR, Pech LL: Microplitis demolitor polydnavirus induces apoptosis of a specific haemocyte morphotype in Pseudoplusia includens. J Gen Virol. 1995, 76 (Pt 2): 283-291.
PubMed
CAS
Google Scholar
Beckage NE, Tan FF, Schleifer KW, Lane RD, Cherubin LL: Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol. 1994, 26: 165-195. 10.1002/arch.940260209.
CAS
Google Scholar
Matsumoto Y, Oda Y, Uryu M, Hayakawa Y: Insect cytokine growth-blocking peptide triggers a termination system of cellular immunity by inducing its binding protein. J Biol Chem. 2003, 278 (40): 38579-38585. 10.1074/jbc.M305986200.
PubMed
CAS
Google Scholar
Strand MR, Hayakawa Y, Clark KD: Plasmatocyte spreading peptide (PSP1) and growth blocking peptide (GBP) are multifunctional homologs. J Insect Physiol. 2000, 46 (5): 817-824. 10.1016/S0022-1910(99)00171-7.
PubMed
CAS
Google Scholar
Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M: New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiol. 2005, 7 (3): 335-350. 10.1111/j.1462-5822.2004.00462.x.
PubMed
CAS
Google Scholar
Negre V, Hotelier T, Volkoff A-N, Gimenez S, Cousserans F, Mita K, Sabau X, Rocher J, López-Ferber M, d'Alençon E, Audant P, Sabourault C, Bidegainberry V, Hilliou F, Fournier P: SPODOBASE : an EST database for the lepidopteran crop pest Spodoptera. BMC Bioinformatics.
Hugot K, Riviere MP, Moreilhon C, Dayem MA, Cozzitorto J, Arbiol G, Barbry P, Weiss C, Galiana E: Coordinated regulation of genes for secretion in tobacco at late developmental stages: association with resistance against oomycetes. Plant Physiol. 2004, 134 (2): 858-870. 10.1104/pp.103.034173.
PubMed
CAS
PubMed Central
Google Scholar
Rivers CF, Longworth JF: A non-occluded virus of Junonia coenia (Nymphalidae : Lepidotera). Journal of Invertebrate Pathology. 1972, 20: 369-370. 10.1016/0022-2011(72)90173-5.
Google Scholar
[http://www.prontosystems.com/]
[http://cardioserve.nantes.inserm.fr/mad/madscan/]
Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002, 30 (4): e15-10.1093/nar/30.4.e15.
PubMed
PubMed Central
Google Scholar
Le Meur N, Lamirault G, Bihouee A, Steenman M, Bedrine-Ferran H, Teusan R, Ramstein G, Leger JJ: A dynamic, web-accessible resource to process raw microarray scan data into consolidated gene expression values: importance of replication. Nucleic Acids Res. 2004, 32 (18): 5349-5358. 10.1093/nar/gkh870.
PubMed
CAS
PubMed Central
Google Scholar
[http://www-stat.stanford.edu/~tibs/SAM/]
Didier G, Brezellec P, Remy E, Henaut A: GeneANOVA – gene expression analysis of variance. Bioinformatics. 2002, 18 (3): 490-491. 10.1093/bioinformatics/18.3.490.
PubMed
CAS
Google Scholar
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001, 98 (9): 5116-5121. 10.1073/pnas.091062498.
PubMed
CAS
PubMed Central
Google Scholar
Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J, Lee NH, Yeatman TJ, Quackenbush J: Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol. 2002, 3 (11): research0062-
PubMed
PubMed Central
Google Scholar
Ramakers C, Ruijter JM, Deprez RH, Moorman AF: Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003, 339 (1): 62-66. 10.1016/S0304-3940(02)01423-4.
PubMed
CAS
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): RESEARCH0034-10.1186/gb-2002-3-7-research0034.
PubMed
PubMed Central
Google Scholar
Shida K, Terajima D, Uchino R, Ikawa S, Ikeda M, Asano K, Watanabe T, Azumi K, Nonaka M, Satou Y, Satoh N, Satake M, Kawazoe Y, Kasuya A: Hemocytes of Ciona intestinalis express multiple genes involved in innate immune host defense. Biochem Biophys Res Commun. 2003, 302 (2): 207-218. 10.1016/S0006-291X(03)00113-X.
PubMed
CAS
Google Scholar
Schmit AR, Ratcliffe NA: The encapsulation of foreign tissue implants in Galleria mellonella larvae. J Insect Physiol. 1977, 23 (2): 175-184. 10.1016/0022-1910(77)90027-0.
PubMed
CAS
Google Scholar