Hershey AD, Chase M: Independent functions of viral protein and nucleic acid in growth of bacteriophage. The Journal of general physiology. 1952, 36 (1): 39-56. 10.1085/jgp.36.1.39.
Article
PubMed
CAS
PubMed Central
Google Scholar
Grzesiuk E: The role of mutation frequency decline and SOS repair systems in methyl methanesulfonate mutagenesis. Acta Biochimica Polonica. 1998, POLAND , 45 (2): 523-533.
Nohmi T, Masumura K: Molecular nature of intrachromosomal deletions and base substitutions induced by environmental mutagens. Environmental and molecular mutagenesis. 2005, United States , 45 (2-3): 150-161. 10.1002/em.20110.
Sankaranarayanan K, Wassom JS: Ionizing radiation and genetic risks XIV. Potential research directions in the post-genome era based on knowledge of repair of radiation-induced DNA double-strand breaks in mammalian somatic cells and the origin of deletions associated with human genomic disorders. Mutation research. 2005, Netherlands , 578 (1-2): 333-370.
Friedberg EC, Walker GC, Siede W: DNA Repair and Mutagenesis. 1995, Washington, DC , ASM Press
Google Scholar
Brusick DJ: In vitro mutagenesis assays as predictors of chemical carcinogenesis in mammals. Clinical toxicology. 1977, UNITED STATES , 10 (1): 79-109.
Madhusudan S, Middleton MR: The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer treatment reviews. 2005, England , 31 (8): 603-617. 10.1016/j.ctrv.2005.09.006.
Marriott SJ, Semmes OJ: Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response. Oncogene. 2005, England , 24 (39): 5986-5995. 10.1038/sj.onc.1208976.
Mullighan CG, Flotho C, Downing JR: Genomic assessment of pediatric acute leukemia. Cancer journal (Sudbury, Mass). 2005, United States , 11 (4): 268-282.
Seve P, Dumontet C: Chemoresistance in non-small cell lung cancer. CurrMedChemAnticancer Agents. 2005, Netherlands , 5 (1): 73-88. 10.2174/1568011053352604.
Critchlow SE, Jackson SP: DNA end-joining: from yeast to man. Trends in biochemical sciences. 1998, ENGLAND , 23 (10): 394-398. 10.1016/S0968-0004(98)01284-5.
Weinert T: Yeast checkpoint controls and relevance to cancer. Cancer surveys. 1997, UNITED STATES , 29: 109-132.
Google Scholar
Nickoloff JA, Hoekstra MF: DNA Damage and Repair: Contemporary Cancer Research. 1998, Totowa, NJ , Humana Press
Google Scholar
Elledge SJ: Cell cycle checkpoints: preventing an identity crisis. Science. 1996, UNITED STATES , 274 (5293): 1664-1672. 10.1126/science.274.5293.1664.
Jelinsky SA, Estep P, Church GM, Samson LD: Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Molecular and cellular biology. 2000, UNITED STATES , 20 (21): 8157-8167. 10.1128/MCB.20.21.8157-8167.2000.
Fry RC, Begley TJ, Samson LD: Genome-wide responses to DNA-damaging agents. Annual Review of Microbiology. 2005, United States , 59: 357-377. 10.1146/annurev.micro.59.031805.133658.
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell. 2000, UNITED STATES , 11 (12): 4241-4257.
Aylon Y, Kupiec M: DSB repair: the yeast paradigm. DNA Repair (Amst). 2004, Netherlands , 3 (8-9): 797-815. 10.1016/j.dnarep.2004.04.013.
Doetsch PW, Morey NJ, Swanson RL, Jinks-Robertson S: Yeast base excision repair: interconnections and networks. Progress in nucleic acid research and molecular biology. 2001, United States , 68: 29-39.
Google Scholar
Hoeijmakers JH: Nucleotide excision repair. II: From yeast to mammals. Trends in genetics : TIG. 1993, ENGLAND , 9 (6): 211-217. 10.1016/0168-9525(93)90121-W.
Marti TM, Kunz C, Fleck O: DNA mismatch repair and mutation avoidance pathways. Journal of cellular physiology. 2002, United States , Wiley-Liss, Inc, 191 (1): 28-41. 10.1002/jcp.10077.
Pastwa E, Blasiak J: Non-homologous DNA end joining. Acta Biochimica Polonica. 2003, Poland , 50 (4): 891-908.
Prakash L, Prakash S: Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics. 1977, UNITED STATES , 86 (1): 33-55.
Snow R: Mutants of yeast sensitive to ultraviolet light. Journal of Bacteriology. 1967, UNITED STATES , 94 (3): 571-575.
Caba E, Dickinson DA, Warnes GR, Aubrecht J: Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae. Mutation research. 2005, Netherlands , 575 (1-2): 34-46.
Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO: Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Molecular biology of the cell. 2001, United States , 12 (10): 2987-3003.
Jelinsky SA, Samson LD: Global response of Saccharomyces cerevisiae to an alkylating agent. Proceedings of the National Academy of Sciences of the United States of America. 1999, UNITED STATES , 96 (4): 1486-1491. 10.1073/pnas.96.4.1486.
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M: Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002, England , 418 (6896): 387-391. 10.1038/nature00935.
Hanway D, Chin JK, Xia G, Oshiro G, Winzeler EA, Romesberg FE: Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proceedings of the National Academy of Sciences of the United States of America. 2002, United States , 99 (16): 10605-10610. 10.1073/pnas.152264899.
Lee W, St Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G: Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents. PLoS Genet. 2005, 1 (2): e24-10.1371/journal.pgen.0010024.
Article
PubMed
PubMed Central
Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, UNITED STATES , 285 (5429): 901-906. 10.1126/science.285.5429.901.
Chang M, Bellaoui M, Boone C, Brown GW: A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proceedings of the National Academy of Sciences of the United States of America. 2002, United States , 99 (26): 16934-16939. 10.1073/pnas.262669299.
Friedl AA, Beisker W, Hahn K, Eckardt-Schupp F, Kellerer AM: Application of pulsed field gel electrophoresis to determine gamma-ray-induced double-strand breaks in yeast chromosomal molecules. International journal of radiation biology. 1993, ENGLAND , 63 (2): 173-181.
Mercier G, Berthault N, Touleimat N, Kepes F, Fourel G, Gilson E, Dutreix M: A haploid-specific transcriptional response to irradiation in Saccharomyces cerevisiae. Nucleic acids research. 2005, England , 33 (20): 6635-6643. 10.1093/nar/gki959.
De Sanctis V, Bertozzi C, Costanzo G, Di Mauro E, Negri R: Cell cycle arrest determines the intensity of the global transcriptional response of Saccharomyces cerevisiae to ionizing radiation. Radiation research. 2001, United States , 156 (4): 379-387. 10.1667/0033-7587(2001)156[0379:CCADTI]2.0.CO;2.
Kuranda MJ, Robbins PW: Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. Journal of Biological Chemistry. 1991, UNITED STATES , 266 (29): 19758-19767.
O'Conallain C, Doolin MT, Taggart C, Thornton F, Butler G: Regulated nuclear localisation of the yeast transcription factor Ace2p controls expression of chitinase (CTS1) in Saccharomyces cerevisiae. Molecular & general genetics : MGG. 1999, GERMANY , 262 (2): 275-282. 10.1007/s004380051084.
Zhang L, Zhang Y, Zhou Y, Zhao Y, Zhou Y, Cheng J: Expression profiling of the response of Saccharomyces cerevisiae to 5-fluorocytosine using a DNA microarray. International journal of antimicrobial agents. 2002, Netherlands , Elsevier Science B.V. and International Society of Chemotherapy, 20 (6): 444-450. 10.1016/S0924-8579(02)00201-7.
Tadi D, Hasan RN, Bussereau F, Boy-Marcotte E, Jacquet M: Selection of genes repressed by cAMP that are induced by nutritional limitation in Saccharomyces cerevisiae. Yeast (Chichester, West Sussex). 1999, ENGLAND , John Wiley & Sons, Ltd, 15 (16): 1733-1745.
Ufano S, Pablo ME, Calzada A, del Rey F, Vazquez de Aldana CR: Swm1p subunit of the APC/cyclosome is required for activation of the daughter-specific gene expression program mediated by Ace2p during growth at high temperature in Saccharomyces cerevisiae. Journal of cell science. 2004, England , 117 (Pt 4): 545-557. 10.1242/jcs.00880.
Bobola N, Jansen RP, Shin TH, Nasmyth K: Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell. 1996, UNITED STATES , 84 (5): 699-709. 10.1016/S0092-8674(00)81048-X.
Workman CT, Mak HC, McCuine S, Tagne JB, Agarwal M, Ozier O, Begley TJ, Samson LD, Ideker T: A systems approach to mapping DNA damage response pathways. Science. 2006, 312 (5776): 1054-1059. 10.1126/science.1122088.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schweizer M, Roberts LM, Holtke HJ, Takabayashi K, Hollerer E, Hoffmann B, Muller G, Kottig H, Schweizer E: The pentafunctional FAS1 gene of yeast: its nucleotide sequence and order of the catalytic domains. Molecular & general genetics : MGG. 1986, GERMANY, WEST , 203 (3): 479-486. 10.1007/BF00422073.
Stukey JE, McDonough VM, Martin CE: The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. Journal of Biological Chemistry. 1990, UNITED STATES , 265 (33): 20144-20149.
Parks LW, Smith SJ, Crowley JH: Biochemical and physiological effects of sterol alterations in yeast--a review. Lipids. 1995, 30 (3): 227-230. 10.1007/BF02537825.
Article
PubMed
CAS
Google Scholar
Petersen JG, Kielland-Brandt MC, Nilsson-Tillgren T, Bornaes C, Holmberg S: Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics. 1988, UNITED STATES , 119 (3): 527-534.
Yang YL, Suen J, Brynildsen MP, Galbraith SJ, Liao JC: Inferring yeast cell cycle regulators and interactions using transcription factor activities. BMC genomics [computer file]. 2005, England , 6 (1): 90-10.1186/1471-2164-6-90.
Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B: Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 2000, ENGLAND , 406 (6791): 90-94. 10.1038/35017581.
Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS: Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. Journal of Biological Chemistry. 2001, UNITED STATES , 276 (1): 244-250. 10.1074/jbc.M007103200.
Alseth I, Eide L, Pirovano M, Rognes T, Seeberg E, Bjoras M: The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Molecular and cellular biology. 1999, UNITED STATES , 19 (5): 3779-3787.
Prudden J, Evans JS, Hussey SP, Deans B, O'Neill P, Thacker J, Humphrey T: Pathway utilization in response to a site-specific DNA double-strand break in fission yeast. The EMBO journal. 2003, England , 22 (6): 1419-1430. 10.1093/emboj/cdg119.
Ooi SL, Shoemaker DD, Boeke JD: A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science. 2001, United States , 294 (5551): 2552-2556. 10.1126/science.1065672.
Lundin C, North M, Erixon K, Walters K, Jenssen D, Goldman AS, Helleday T: Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic acids research. 2005, England , 33 (12): 3799-3811. 10.1093/nar/gki681.
Symington LS: Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiology and molecular biology reviews : MMBR. 2002, United States , 66 (4): 630-70, table of contents. 10.1128/MMBR.66.4.630-670.2002.
Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994, 2: 28-36.
PubMed
CAS
Google Scholar
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature. 2004, 431 (7004): 99-104. 10.1038/nature02800.
Article
PubMed
CAS
PubMed Central
Google Scholar
MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E: An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics. 2006, 7: 113-10.1186/1471-2105-7-113.
Article
PubMed
PubMed Central
Google Scholar
Smith SB, Ee HC, Conners JR, German MS: Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol. 1999, 19 (12): 8272-8280.
Article
PubMed
CAS
PubMed Central
Google Scholar
Okuno M, Arimoto E, Ikenobu Y, Nishihara T, Imagawa M: Dual DNA-binding specificity of peroxisome-proliferator-activated receptor gamma controlled by heterodimer formation with retinoid X receptor alpha. Biochem J. 2001, 353 (Pt 2): 193-198. 10.1042/0264-6021:3530193.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sjogren C, Nasmyth K: Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Current biology : CB. 2001, England , 11 (12): 991-995. 10.1016/S0960-9822(01)00271-8.
Overdier DG, Ye H, Peterson RS, Clevidence DE, Costa RH: The winged helix transcriptional activator HFH-3 is expressed in the distal tubules of embryonic and adult mouse kidney. J Biol Chem. 1997, 272 (21): 13725-13730. 10.1074/jbc.272.21.13725.
Article
PubMed
CAS
Google Scholar
Overdier DG, Porcella A, Costa RH: The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol. 1994, 14 (4): 2755-2766.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hand RA, Jia N, Bard M, Craven RJ: Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. EukaryotCell. 2003, United States , 2 (2): 306-317. 10.1128/EC.2.2.306-317.2003.
Fedorova IV, Gracheva LM, Kovaltzova SV, Evstuhina TA, Alekseev SY, Korolev VG: The yeast HSM3 gene acts in one of the mismatch repair pathways. Genetics. 1998, 148 (3): 963-973.
PubMed
CAS
PubMed Central
Google Scholar
Fedorova IV, Kovaltzova SV, Korolev VG: The yeast HSM3 gene is involved in DNA mismatch repair in slowly dividing cells. Genetics. 2000, 154 (1): 495-496.
PubMed
CAS
PubMed Central
Google Scholar
Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM: Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci U S A. 2002, 99 (13): 8778-8783. 10.1073/pnas.132275199.
Article
PubMed
CAS
PubMed Central
Google Scholar
Treger JM, McEntee K: Structure of the DNA damage-inducible gene DDR48 and evidence for its role in mutagenesis in Saccharomyces cerevisiae. Molecular and cellular biology. 1990, UNITED STATES , 10 (6): 3174-3184.
Rodrigues-Pousada CA, Nevitt T, Menezes R, Azevedo D, Pereira J, Amaral C: Yeast activator proteins and stress response: an overview. FEBS letters. 2004, Netherlands , 567 (1): 80-85. 10.1016/j.febslet.2004.03.119.
van Laar T, van der Eb AJ, Terleth C: A role for Rad23 proteins in 26S proteasome-dependent protein degradation?. Mutation research. 2002, Netherlands , 499 (1): 53-61.
Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002, 298 (5594): 799-804. 10.1126/science.1075090.
Article
PubMed
CAS
Google Scholar
Thiagalingam A, De Bustros A, Borges M, Jasti R, Compton D, Diamond L, Mabry M, Ball DW, Baylin SB, Nelkin BD: RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas. Mol Cell Biol. 1996, 16 (10): 5335-5345.
Article
PubMed
CAS
PubMed Central
Google Scholar
Elledge SJ, Davis RW: Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes & development. 1990, UNITED STATES , 4 (5): 740-751.
Huang M, Elledge SJ: Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Molecular and cellular biology. 1997, UNITED STATES , 17 (10): 6105-6113.
Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L: Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell. 2003, United States , 112 (3): 391-401. 10.1016/S0092-8674(03)00075-8.
Zhou Z, Elledge SJ: DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell. 1993, UNITED STATES , 75 (6): 1119-1127. 10.1016/0092-8674(93)90321-G.
Zhao X, Rothstein R: The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proceedings of the National Academy of Sciences of the United States of America. 2002, United States , 99 (6): 3746-3751. 10.1073/pnas.062502299.
Basrai MA, Velculescu VE, Kinzler KW, Hieter P: NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Molecular and cellular biology. 1999, UNITED STATES , 19 (10): 7041-7049.
Dubacq C, Chevalier A, Mann C: The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea. Molecular and cellular biology. 2004, United States , 24 (6): 2560-2572. 10.1128/MCB.24.6.2560-2572.2004.
Jung US, Levin DE: Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol. 1999, 34 (5): 1049-1057. 10.1046/j.1365-2958.1999.01667.x.
Article
PubMed
CAS
Google Scholar
Ma JL, Kim EM, Haber JE, Lee SE: Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol. 2003, 23 (23): 8820-8828. 10.1128/MCB.23.23.8820-8828.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gene Ontology C: Creating the gene ontology resource: design and implementation. Genome research. 2001, United States , 11 (8): 1425-1433. 10.1101/gr.180801.
Hong EL, Balakrishnan R, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Livestone MS, Nash R, Park J, Oughtred R, Skrzypek M, Starr B, Theesfeld CL, Andrada R, Binkley G, Dong Q, Lane C, Hitz B, Miyasato S, Schroeder M, Sethuraman A, Weng S, Dolinski K, Botstein D, Cherry JM: Saccharomyces Genome Database. 2006, 2006:
Google Scholar
Chen J, Derfler B, Maskati A, Samson L: Cloning a eukaryotic DNA glycosylase repair gene by the suppression of a DNA repair defect in Escherichia coli. Proc Natl Acad Sci U S A. 1989, 86 (20): 7961-7965. 10.1073/pnas.86.20.7961.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen J, Derfler B, Samson L: Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage. Embo J. 1990, 9 (13): 4569-4575.
PubMed
CAS
PubMed Central
Google Scholar
Chen J, Samson L: Induction of S.cerevisiae MAG 3-methyladenine DNA glycosylase transcript levels in response to DNA damage. Nucleic Acids Res. 1991, 19 (23): 6427-6432.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kunz BA, Henson ES, Karthikeyan R, Kuschak T, McQueen SA, Scott CA, Xiao W: Defects in base excision repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethyl methanesulfonate and N-methyl-N'-nitro-N-nitrosoguanidine. Environmental and molecular mutagenesis. 1998, UNITED STATES , 32 (2): 173-178. 10.1002/(SICI)1098-2280(1998)32:2<173::AID-EM13>3.0.CO;2-M.
McHugh PJ, Gill RD, Waters R, Hartley JA: Excision repair of nitrogen mustard-DNA adducts in Saccharomyces cerevisiae. Nucleic acids research. 1999, ENGLAND , 27 (16): 3259-3266. 10.1093/nar/27.16.3259.
Yu S, Owen-Hughes T, Friedberg EC, Waters R, Reed SH: The yeast Rad7/Rad16/Abf1 complex generates superhelical torsion in DNA that is required for nucleotide excision repair. DNA Repair (Amst). 2004, Netherlands , Elsevier B.V, 3 (3): 277-287. 10.1016/j.dnarep.2003.11.004.
Mulder KW, Winkler GS, Timmers HT: DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4-Not complex. Nucleic acids research. 2005, England , 33 (19): 6384-6392. 10.1093/nar/gki938.
Kessler MM, Henry MF, Shen E, Zhao J, Gross S, Silver PA, Moore CL: Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3'-end formation in yeast. Genes & development. 1997, UNITED STATES , 11 (19): 2545-2556.
Sherman F: Getting started with yeast. Methods Enzymol. 2002, 350: 3-41.
Article
PubMed
CAS
Google Scholar
Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg JP, Ballin J, McCormick M, Norton J, Pollock T, Sumwalt T, Butcher L, Porter D, Molla M, Hall C, Blattner F, Sussman MR, Wallace RL, Cerrina F, Green RD: Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome research. 2002, United States , 12 (11): 1749-1755. 10.1101/gr.362402.
Zhou Y, Abagyan R: Match-only integral distribution (MOID) algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics. 2002, 3: 3-10.1186/1471-2105-3-3.
Article
PubMed
PubMed Central
Google Scholar
Choe SE, Boutros M, Michelson AM, Church GM, Halfon MS: Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 2005, 6 (2): R16-10.1186/gb-2005-6-2-r16.
Article
PubMed
PubMed Central
Google Scholar
Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003, 100 (16): 9440-9445. 10.1073/pnas.1530509100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America. 1998, UNITED STATES , 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.
Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004, 32 (Database issue): D91-4. 10.1093/nar/gkh012.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sandelin A, Hoglund A, Lenhard B, Wasserman WW: Integrated analysis of yeast regulatory sequences for biologically linked clusters of genes. Funct Integr Genomics. 2003, 3 (3): 125-134. 10.1007/s10142-003-0086-6.
Article
PubMed
CAS
Google Scholar