Preparation of high-molecular-weight DNA
Five hundred microliters of blood was collected from a male individual of L. calcarifer with a heparinized syringe. The concentration of leucocytes was quantified to be approximately 109 cells/ml. Quantities corresponding to 2.14 × 107 cells were embedded in 40 μl of 2% InCert agarose (in PBS) for DNA extraction. The mixture was then transferred into ice-cold plug moulds (Bio-Rad, SG, Singapore). Individual plugs were released into cell lysis solution [1% lithiumdodecyl sulfate, 10 mM Tris (pH 8), 100 mM EDTA (pH 8)] that was incubated at 37°C for 1 hr with occasional swirling. The cell lysis solution was replaced with 50 ml of new cell lysis solution and incubated overnight at 37°C. The cell lysis solution was supplanted with 50 ml of 20% NDS. Two ml of proteinase K (20 mg/ml) was added to each 50 ml of 20% NDS consisting of 0.2% N-laurylsarcosine, 2 mM Tris-HCL (pH9.0), 0.14 M EDTA. The solution was incubated at 37°C overnight. Plugs were washed three times with TE50 and 0.05 M EDTA for one hour at room temperature. The plugs were put into a fresh Falcon tube, and washed twice with 50 ml TE50 and 50 μl PMSF (100 mM) at 37°C for 20 min to inactivate proteinase K. The plugs were then washed twice with 50 ml of TE50 in the Falcon tube at room temperature for 30 min to get rid of the PMSF.
Partial digestion of high molecular weight DNA and size selection
Digestion with restriction enzyme HindIII, pulse field gel electrophoresis (PFGE), isolation and purification of high molecular weight (HMW) DNA were performed using the method described previously [21]. Briefly, after displacement of the plugs by 1 × TE buffer, the agarose plugs were soaked in 800 μl of HindIII digestion buffer [0.015% bovine serum albumin (BSA), 75 mM NaCl, 12 mM Tris-HCl (pH 7.50)] and 3 U of HindIII for 16 hours at 4°C, after which, 100 μl of MgCl2 (100 mM) was added and the mixture was incubated at 37°C for one hour to partially digest the genomic DNA. The reaction was stopped by adding 150 μl of 0.5 M EDTA (pH 8.0), 15 μl 20 mg/ml proteinase K and 37.5 μl 20% NDS, and incubating at 37°C for one hour. Plugs were rinsed in TE50 in a Petri dish then transferred to a 15 ml Falcon tube. 15 ml of TE50 and 15 μl of 100 mM PMSF were added to the tube. The tube was incubated at room temperature for 20 min on rotating shaker. The tube with plug was washed twice with 15 ml TE50 at room temperature on a shaker for 30 min each.
Size selection was carried out as described [22], with minor modifications. In brief, partially digested DNA was separated by PFGE in 0.5 × TBE on a CHEF-DRII apparatus (Bio-Rad, SG, Singapore) under the following conditions: 14°C, 6.0 v/cm, angle = 120°, initial switch time = 5 sec, final switch time = 15 sec, run time = 16 hours and ramping = linear. At the end of this electrophoresis step, the gel portion containing DNA of 50 kb or less in size together with the portion of the gel containing the original plugs was removed. 1% fresh agarose was added to the remaining gel followed by a second electrophoresis step using the same conditions for 18 hours. Gel slices containing size fractionated DNA were obtained by cutting horizontally at 0.5 cm intervals in the size range of 100–250 kb. Each excised gel slice was subsequently inverted and buried in 1% low-melting-point agarose gel. A third electrophoresis step using the same conditions for 18 hours was carried out to concentrate the widely spread DNA fragments in each gel slice into a sharp single band. The band of size selected genomic DNA was then excised and dialyzed in 1 × TAE at 4°C overnight.
Ligation and electroporation
Size fractionated DNA was recovered from each gel band by electroelution in Spectra/Por 7 dialysis bags (Spectrum Laboratories, CA, USA) as described [23]. Partially digested HMW DNA was then ligated to 25 ng of dephosphorylated, HindIII digested pCC1BAC (Epicentre, MD, USA) at a 1:10 molar ratio of insert to vector with 400 units of T4 ligase (NEB, MA, USA) in 50 μl reaction at 16°C overnight. Dialyzed ligation was used to transform ElectroMAX DH10B competent cells (Invitrogen, MD, USA). Electroporation was carried out using a BioRad Gene Pulser (BioRad, CA, USA) at 4 kΩ and 350 V. Cells were incubated in 1 ml SOC medium at 37°C for one hour with shaking and later spread on LB plates containing 12.5 μg/ml Chloramphenicol, 40 μg/ml X-gal and 100 μg/ml IPTG and incubated at 37°C for 24 hours to allow the blue color to develop sufficiently.
Isolation of BAC DNA and estimation of insert size
We isolated BAC DNA from 212 BAC clones randomly chosen using a QIAwell 8 Plasmid Kit (Qiagen, HRB, Germany) following the protocol of the manufacturer. Isolated BAC DNA were digested with the restriction enzyme NotI and then subjected to PFGE for 16 hours using the same PFGE conditions as those for high molecular weight DNA isolation.
Library pooling and PCR screening
White recombinant colonies were manually picked and arrayed to plates (Genetix, Hampshire, UK) of 384-well each containing of 60 μl of LB media and 25% glycerol. Plates were incubated overnight at 37°C and stored at -80°C. The frozen stocks of the primary clones in 384 well plates were recovered and transferred to 4 96-well PCR plates containing 100 μl LB medium supplemented with 15% glycerol and 12.5 μg/ml chloramphenicol, then incubated overnight at 37°C to make a copy of the BAC library.
To establish a hierarchical PCR screening system, the library was divided into 11 superpools each consisting of 12 plates of 384-wells. Each superpool was divided into 48 pools each consisting of one 96-well plate of BAC clones. Cultures from 48 pools were combined to make superpool DNA for the first step PCR screening. Cultures from 48 plates of 96-well BAC clones were combined to make pool DNA for the second step PCR screening. In each pool, cultures from each well of 96 clones from a 96-well plate were used for the third step screening.
For examining the genome coverage of the BAC library, twenty-four microsatellites (Lca318, Lca064, Lca137, Lca171, Lca098, Lca062, Lca130, Lca086, Lca301, Lca002, Lca058, Lca074, Lca253, Lca147, Lca069, Lca367, Lca021, Lca193, Lca220, Lca181, Lca255, Lca040, Lca411 and Lca231) located on each of the 24 linkage groups (Table 1) [6], and 15 ESTs/genes isolated from cDNA libraries or selected from GenBank were used to screen the library. These 15 ESTs/genes are: PVALB-1, 5-HT, PROL-A, 14KDA-AP, AMY-A, MX, AP, LECT2, LYSO-G, IGF-1, TUB1A, TUB2B, GT7, CYP19A2 and AFPII. Primers (Table 2) were designed in unique regions for each EST/gene using software PrimerSelect (Dnastar, WI, USA). The PCR reaction (25 μl) consisted of 2 μl cultured cells, 1 × PCR buffer (Finnzymes, Espoo, Finland) containing 1.5 mM MgCl2, 200 nM of each primer, 50 μM of each dNTP and one unit DNA polymerase (Finnzymes, Espoo, Finland). PCR was conducted on a PTC-100 PCR machine (MJ Research, CA, USA) using the following PCR program: an initial denaturation at 95°C for 2 min followed by 35 cycles 95°C for 30 sec, 55°C for 30 sec and 72°C for 1–2 min, and a final extension at 72°C for 5 min. PCR products are checked for the presence of PCR products on 2% agarose gels. Positive pools were used to determine a set of addresses corresponding to potential clones, which were subsequently validated by a third PCR analysis of individual clones. PCR products of respective microsatellites and genes/ESTs were confirmed by direct sequencing.
Microsatellite isolation from BAC clones and linkage mapping
DNA was isolated from pool of 300 BAC clones using a QIAwell 8 Plasmid Kit (Qiagen, HRB, Germany). CA- and GA-microsatellites located in the 300 BAC clones were enriched according to a previous protocol [24] with some modifications [25]. Repeat-enriched DNA fragments of 400–1200 bp in size were cloned into pGEM-T vector (Promega, CA, USA), and transformed into XL-10 blue supercompetent cells (Stratagene, CA, USA). White clones were picked and arrayed into 96-well plates for bidirectional sequencing on an ABI3730 × l DNA sequencer (ABI, CA, USA) using the BigDye V3.0 kit, M13 forward and M13 reverse primers. Redundant and overlapping sequences were grouped using Sequencher (GeneCodes, MI, USA). Unique sequences were compared to known microsatellite sequences of L. calcarifer prior to primer design in order to reduce redundancy. Genotyping and linkage mapping of these microsatellites were performed with the mapping panel described previously [6]. The graphic maps were generated using Mapchart software [26]. To identify the origin of each microsatellite from the 300 BAC clones, these clones were PCR-screened with microsatellite primers. PCR products were checked for the presence of objective bands on 2% agarose gels.