Bouhnik Y, Flourie B, D'Agay-Abensour L, Pochart P, Gramet G, Durand M, Rambaud JC: Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. J Nutr. 1997, 127 (3): 444-448.
PubMed
Google Scholar
Gibson GR, Beatty ER, Wang X, Cummings JH: Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995, 108 (4): 975-982. 10.1016/0016-5085(95)90192-2.
Article
PubMed
Google Scholar
Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Van der Meer R: Dietary fructo-oligosaccharides dose-dependently increase translocation of salmonella in rats. J Nutr. 2003, 133 (7): 2313-2318.
PubMed
Google Scholar
Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, Van Der Meer R: Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonella: protective role of calcium. Gut. 2004, 53 (4): 530-535. 10.1136/gut.2003.023499.
Article
PubMed
PubMed Central
Google Scholar
Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Van der Meer R: Dietary fructooligosaccharides increase intestinal permeability in rats. J Nutr. 2005, 135 (4): 837-842.
PubMed
Google Scholar
Rodenburg W, Keijer J, Kramer E, Roosing S, Vink C, Katan MB, van der Meer R, Bovee-Oudenhoven IM: Salmonella induces prominent gene expression in the rat colon. BMC Microbiol. 2007, 7 (1): 84-10.1186/1471-2180-7-84.
Article
PubMed
PubMed Central
Google Scholar
Arslan G, Atasever T, Cindoruk M, Yildirim IS: (51)CrEDTA colonic permeability and therapy response in patients with ulcerative colitis. Nucl Med Commun. 2001, 22 (9): 997-1001. 10.1097/00006231-200109000-00009.
Article
PubMed
Google Scholar
Wang Q, Pantzar N, Jeppsson B, Westrom BR, Karlsson BW: Increased intestinal marker absorption due to regional permeability changes and decreased intestinal transit during sepsis in the rat. Scand J Gastroenterol. 1994, 29 (11): 1001-1008. 10.3109/00365529409094877.
Article
PubMed
Google Scholar
Bhatia V, Tandon RK: Stress and the gastrointestinal tract. J Gastroenterol Hepatol. 2005, 20 (3): 332-339. 10.1111/j.1440-1746.2004.03508.x.
Article
PubMed
Google Scholar
Mankertz J, Schulzke JD: Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol. 2007, 23 (4): 379-383. 10.1097/MOG.0b013e32816aa392.
Article
PubMed
Google Scholar
Montalto M, Maggiano N, Ricci R, Curigliano V, Santoro L, Di Nicuolo F, Vecchio FM, Gasbarrini A, Gasbarrini G: Lactobacillus acidophilus protects tight junctions from aspirin damage in HT-29 cells. Digestion. 2004, 69 (4): 225-228. 10.1159/000079152.
Article
PubMed
Google Scholar
Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD: Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut. 2007, 56 (1): 61-72. 10.1136/gut.2006.094375.
Article
PubMed
PubMed Central
Google Scholar
Potten CS, Booth C: The role of radiation-induced and spontaneous apoptosis in the homeostasis of the gastrointestinal epithelium: a brief review. Comp Biochem Physiol B Biochem Mol Biol. 1997, 118 (3): 473-478. 10.1016/S0305-0491(97)00219-8.
Article
PubMed
Google Scholar
Schulzke JD, Bojarski C, Zeissig S, Heller F, Gitter AH, Fromm M: Disrupted barrier function through epithelial cell apoptosis. Ann N Y Acad Sci. 2006, 1072: 288-299. 10.1196/annals.1326.027.
Article
PubMed
Google Scholar
Wehkamp J, Chu H, Shen B, Feathers RW, Kays RJ, Lee SK, Bevins CL: Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett. 2006, 580 (22): 5344-5350. 10.1016/j.febslet.2006.08.083.
Article
PubMed
Google Scholar
Swidsinski A, Sydora BC, Doerffel Y, Loening-Baucke V, Vaneechoutte M, Lupicki M, Scholze J, Lochs H, Dieleman LA: Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm Bowel Dis. 2007, 13 (8): 963-970. 10.1002/ibd.20163.
Article
PubMed
Google Scholar
Nagura H: Mucosal defense mechanism in health and disease. Role of the mucosal immune system. Acta Pathol Jpn. 1992, 42 (6): 387-400.
PubMed
Google Scholar
Andersson HB, Ellegard LH, Bosaeus IG: Nondigestibility characteristics of inulin and oligofructose in humans. J Nutr. 1999, 129 (7 Suppl): 1428S-30S.
PubMed
Google Scholar
Diaz-Uriarte R, Alvarez de Andres S: Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006, 7: 3-10.1186/1471-2105-7-3.
Article
PubMed
PubMed Central
Google Scholar
Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P: Screening large-scale association study data: exploiting interactions using random forests. BMC Genet. 2004, 5 (1): 32-10.1186/1471-2156-5-32.
Article
PubMed
PubMed Central
Google Scholar
Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T: Pathway mapping tools for analysis of high content data. Methods Mol Biol. 2007, 356: 319-350.
PubMed
Google Scholar
Khatri P, Draghici S: Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics. 2005, 21 (18): 3587-3595. 10.1093/bioinformatics/bti565.
Article
PubMed
PubMed Central
Google Scholar
Heijnen AM, Brink EJ, Lemmens AG, Beynen AC: Ileal pH and apparent absorption of magnesium in rats fed on diets containing either lactose or lactulose. Br J Nutr. 1993, 70 (3): 747-756. 10.1079/BJN19930170.
Article
PubMed
Google Scholar
Meddings JB, Gibbons I: Discrimination of site-specific alterations in gastrointestinal permeability in the rat. Gastroenterology. 1998, 114 (1): 83-92. 10.1016/S0016-5085(98)70636-5.
Article
PubMed
Google Scholar
Stappenbeck TS, Hooper LV, Manchester JK, Wong MH, Gordon JI: Laser capture microdissection of mouse intestine: characterizing mRNA and protein expression, and profiling intermediary metabolism in specified cell populations. Methods in enzymology. 2002, 356: 167-196.
Article
PubMed
Google Scholar
Hardie DG: The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci. 2004, 117 (Pt 23): 5479-5487. 10.1242/jcs.01540.
Article
PubMed
Google Scholar
Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, Spiegelman BM: A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A. 2007, 104 (19): 7933-7938. 10.1073/pnas.0702683104.
Article
PubMed
PubMed Central
Google Scholar
Madsen KL, Yanchar NL, Sigalet DL, Reigel T, Fedorak RN: FK506 increases permeability in rat intestine by inhibiting mitochondrial function. Gastroenterology. 1995, 109 (1): 107-114. 10.1016/0016-5085(95)90274-0.
Article
PubMed
Google Scholar
Mandel LJ, Bacallao R, Zampighi G: Uncoupling of the molecular 'fence' and paracellular 'gate' functions in epithelial tight junctions. Nature. 1993, 361 (6412): 552-555. 10.1038/361552a0.
Article
PubMed
Google Scholar
Unno N, Menconi MJ, Salzman AL, Smith M, Hagen S, Ge Y, Ezzell RM, Fink MP: Hyperpermeability and ATP depletion induced by chronic hypoxia or glycolytic inhibition in Caco-2BBe monolayers. Am J Physiol. 1996, 270 (6 Pt 1): G1010-21.
PubMed
Google Scholar
Somasundaram S, Rafi S, Hayllar J, Sigthorsson G, Jacob M, Price AB, Macpherson A, Mahmod T, Scott D, Wrigglesworth JM, Bjarnason I: Mitochondrial damage: a possible mechanism of the "topical" phase of NSAID induced injury to the rat intestine. Gut. 1997, 41 (3): 344-353.
Article
PubMed
PubMed Central
Google Scholar
Nazli A, Yang PC, Jury J, Howe K, Watson JL, Soderholm JD, Sherman PM, Perdue MH, McKay DM: Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol. 2004, 164 (3): 947-957.
Article
PubMed
PubMed Central
Google Scholar
Bjarnason I, Smethurst P, Macpherson A, Walker F, McElnay JC, Passmore AP, Menzies IS: Glucose and citrate reduce the permeability changes caused by indomethacin in humans. Gastroenterology. 1992, 102 (5): 1546-1550.
PubMed
Google Scholar
Bours MJ, Troost FJ, Brummer RJ, Bast A, Dagnelie PC: Local effect of adenosine 5'-triphosphate on indomethacin-induced permeability changes in the human small intestine. Eur J Gastroenterol Hepatol. 2007, 19 (3): 245-250. 10.1097/MEG.0b013e328011093c.
Article
PubMed
Google Scholar
Somasundaram S, Sigthorsson G, Simpson RJ, Watts J, Jacob M, Tavares IA, Rafi S, Roseth A, Foster R, Price AB, Wrigglesworth JM, Bjarnason I: Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat. Aliment Pharmacol Ther. 2000, 14 (5): 639-650. 10.1046/j.1365-2036.2000.00723.x.
Article
PubMed
Google Scholar
Le Blay GM, Michel CD, Blottiere HM, Cherbut CJ: Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved. J Appl Microbiol. 2003, 94 (2): 312-320. 10.1046/j.1365-2672.2003.01836.x.
Article
PubMed
Google Scholar
Remesy C, Levrat MA, Gamet L, Demigne C: Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am J Physiol. 1993, 264 (5 Pt 1): G855-62.
PubMed
Google Scholar
Ten Bruggencate SJ, Bovee-Oudenhoven IM, Lettink-Wissink ML, Katan MB, van der Meer R: Dietary fructooligosaccharides affect intestinal barrier function in healthy men. J Nutr. 2006, 136 (1): 70-74.
PubMed
Google Scholar
Scheppach W: Effects of short chain fatty acids on gut morphology and function. Gut. 1994, 35 (1 Suppl): S35-8. 10.1136/gut.35.1_Suppl.S35.
Article
PubMed
PubMed Central
Google Scholar
Argenzio RA, Meuten DJ: Short-chain fatty acids induce reversible injury of porcine colon. Dig Dis Sci. 1991, 36 (10): 1459-1468. 10.1007/BF01296816.
Article
PubMed
Google Scholar
Lin J, Nafday SM, Chauvin SN, Magid MS, Pabbatireddy S, Holzman IR, Babyatsky MW: Variable effects of short chain fatty acids and lactic acid in inducing intestinal mucosal injury in newborn rats. J Pediatr Gastroenterol Nutr. 2002, 35 (4): 545-550. 10.1097/00005176-200210000-00016.
Article
PubMed
Google Scholar
Nafday SM, Chen W, Peng L, Babyatsky MW, Holzman IR, Lin J: Short-chain fatty acids induce colonic mucosal injury in rats with various postnatal ages. Pediatr Res. 2005, 57 (2): 201-204. 10.1203/01.PDR.0000150721.83224.89.
Article
PubMed
Google Scholar
Lan A, Lagadic-Gossmann D, Lemaire C, Brenner C, Jan G: Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis. 2007, 12 (3): 573-591. 10.1007/s10495-006-0010-3.
Article
PubMed
Google Scholar
Menconi MJ, Salzman AL, Unno N, Ezzell RM, Casey DM, Brown DA, Tsuji Y, Fink MP: Acidosis induces hyperpermeability in Caco-2BBe cultured intestinal epithelial monolayers. Am J Physiol. 1997, 272 (5 Pt 1): G1007-21.
PubMed
Google Scholar
Beauvieux MC, Tissier P, Gin H, Canioni P, Gallis JL: Butyrate impairs energy metabolism in isolated perfused liver of fed rats. J Nutr. 2001, 131 (7): 1986-1992.
PubMed
Google Scholar
Charney AN, Micic L, Egnor RW: Nonionic diffusion of short-chain fatty acids across rat colon. Am J Physiol. 1998, 274 (3 Pt 1): G518-24.
PubMed
Google Scholar
Chu S, Montrose MH: Transepithelial SCFA fluxes link intracellular and extracellular pH regulation of mouse colonocytes. Comp Biochem Physiol A Physiol. 1997, 118 (2): 403-405. 10.1016/S0300-9629(96)00329-5.
Article
PubMed
Google Scholar
Moreau NM, Martin LJ, Toquet CS, Laboisse CL, Nguyen PG, Siliart BS, Dumon HJ, Champ MM: Restoration of the integrity of rat caeco-colonic mucosa by resistant starch, but not by fructo-oligosaccharides, in dextran sulfate sodium-induced experimental colitis. Br J Nutr. 2003, 90 (1): 75-85. 10.1079/BJN2003867.
Article
PubMed
Google Scholar
DeSoignie R, Sellin JH: Propionate-initiated changes in intracellular pH in rabbit colonocytes. Gastroenterology. 1994, 107 (2): 347-356.
PubMed
Google Scholar
Durand T, Gallis JL, Masson S, Cozzone PJ, Canioni P: pH regulation in perfused rat liver: respective role of Na(+)-H+ exchanger and Na(+)-HCO3- cotransport. Am J Physiol. 1993, 265 (1 Pt 1): G43-50.
PubMed
Google Scholar
Buck LT, Hochachka PW: Anoxic suppression of Na(+)-K(+)-ATPase and constant membrane potential in hepatocytes: support for channel arrest. Am J Physiol. 1993, 265 (5 Pt 2): R1020-5.
PubMed
Google Scholar
Nandi D, Tahiliani P, Kumar A, Chandu D: The ubiquitin-proteasome system. J Biosci. 2006, 31 (1): 137-155. 10.1007/BF02705243.
Article
PubMed
Google Scholar
Jung T, Bader N, Grune T: Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys. 2007, 462 (2): 231-237. 10.1016/j.abb.2007.01.030.
Article
PubMed
Google Scholar
Scherz-Shouval R, Elazar Z: ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 2007
Google Scholar
Wang J, Maldonado MA: The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 2006, 3 (4): 255-261.
PubMed
Google Scholar
Strehl B, Seifert U, Kruger E, Heink S, Kuckelkorn U, Kloetzel PM: Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev. 2005, 207: 19-30. 10.1111/j.0105-2896.2005.00308.x.
Article
PubMed
Google Scholar
Fitzpatrick LR, Khare V, Small JS, Koltun WA: Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice. Dig Dis Sci. 2006, 51 (7): 1269-1276. 10.1007/s10620-006-8047-2.
Article
PubMed
Google Scholar
Holst JJ: Enteroglucagon. Annu Rev Physiol. 1997, 59: 257-271. 10.1146/annurev.physiol.59.1.257.
Article
PubMed
Google Scholar
Cani PD, Hoste S, Guiot Y, Delzenne NM: Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr. 2007, 98 (1): 32-37. 10.1017/S0007114507691648.
Article
PubMed
Google Scholar
Zhou J, Hegsted M, McCutcheon KL, Keenan MJ, Xi X, Raggio AM, Martin RJ: Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity (Silver Spring). 2006, 14 (4): 683-689.
Article
Google Scholar
Cox HM: Peptide YY: a neuroendocrine neighbor of note. Peptides. 2007, 28 (2): 345-351. 10.1016/j.peptides.2006.07.023.
Article
PubMed
Google Scholar
Lee K, Li B, Xi X, Suh Y, Martin RJ: Role of neuronal energy status in the regulation of adenosine 5'-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology. 2005, 146 (1): 3-10. 10.1210/en.2004-0968.
Article
PubMed
Google Scholar
Estall JL, Drucker DJ: Tales beyond the crypt: glucagon-like peptide-2 and cytoprotection in the intestinal mucosa. Endocrinology. 2005, 146 (1): 19-21. 10.1210/en.2004-1389.
Article
PubMed
Google Scholar
Doyle ME, Egan JM: Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007, 113 (3): 546-593. 10.1016/j.pharmthera.2006.11.007.
Article
PubMed
PubMed Central
Google Scholar
Dube PE, Brubaker PL: Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am J Physiol Endocrinol Metab. 2007, 293 (2): E460-5. 10.1152/ajpendo.00149.2007.
Article
PubMed
Google Scholar
Ghatei MA, Goodlad RA, Taheri S, Mandir N, Brynes AE, Jordinson M, Bloom SR: Proglucagon-derived peptides in intestinal epithelial proliferation: glucagon-like peptide-2 is a major mediator of intestinal epithelial proliferation in rats. Dig Dis Sci. 2001, 46 (6): 1255-1263. 10.1023/A:1010615429639.
Article
PubMed
Google Scholar
Kouris GJ, Liu Q, Rossi H, Djuricin G, Gattuso P, Nathan C, Weinstein RA, Prinz RA: The effect of glucagon-like peptide 2 on intestinal permeability and bacterial translocation in acute necrotizing pancreatitis. Am J Surg. 2001, 181 (6): 571-575. 10.1016/S0002-9610(01)00635-3.
Article
PubMed
Google Scholar
Prasad R, Alavi K, Schwartz MZ: Glucagonlike peptide-2 analogue enhances intestinal mucosal mass after ischemia and reperfusion. J Pediatr Surg. 2000, 35 (2): 357-359. 10.1016/S0022-3468(00)90040-X.
Article
PubMed
Google Scholar
Schneeberger EE, Lynch RD: The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004, 286 (6): C1213-28. 10.1152/ajpcell.00558.2003.
Article
PubMed
Google Scholar
Reeves PG, Nielsen FH, Fahey GC: AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993, 123 (11): 1939-1951.
PubMed
Google Scholar
van Hal NL, Vorst O, van Houwelingen AM, Kok EJ, Peijnenburg A, Aharoni A, van Tunen AJ, Keijer J: The application of DNA microarrays in gene expression analysis. J Biotechnol. 2000, 78 (3): 271-280. 10.1016/S0168-1656(00)00204-2.
Article
PubMed
Google Scholar
Allison DB, Cui X, Page GP, Sabripour M: Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006, 7 (1): 55-65. 10.1038/nrg1749.
Article
PubMed
Google Scholar
Pellis L, Franssen-van Hal NL, Burema J, Keijer J: The intraclass correlation coefficient applied for evaluation of data correction, labeling methods, and rectal biopsy sampling in DNA microarray experiments. Physiol Genomics. 2003, 16 (1): 99-106. 10.1152/physiolgenomics.00111.2003.
Article
PubMed
Google Scholar
NCBI GEO website: [http://www.ncbi.nlm.nih.gov/geo/]
Benjamini YH: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc. 1995, 57 (1): 289-300.
Google Scholar
Quackenbush J: Extracting meaning from functional genomics experiments. Toxicol Appl Pharmacol. 2005, 207 (2 Suppl): 195-199. 10.1016/j.taap.2005.04.029.
Article
PubMed
Google Scholar
Cran-website: [http://cran.r-project.org/]
R development core team: R: A language and environment for statistical computing. 2004, [http://www.R-project.org]
Google Scholar
Lyons-Weiler J, Pelikan R, Zeh HJ, Whitcomb DC, Malehorn DE, Bigbee WL, Hauskrecht M: Assessing the statistical significance of the achieved classification error of classifiers constructed using serum peptide profiles, and a prescription for random sampling repeated studies for massive high-throughput genomic and proteomics studies. Cancer Informatics. 2005, 1: 53-77.
PubMed
PubMed Central
Google Scholar
Rodenburg W, Heidema AG, Boer JM, Bovee-Oudenhoven IM, Feskens EJ, Mariman EC, Keijer J: A framework to identify physiological responses in microarray based gene expression studies: selection and interpretation of biologically relevant genes. Physiol Genomics. 2008, 33: 78-90. 10.1152/physiolgenomics.00167.2007.
Article
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005, 102 (43): 15545-15550. 10.1073/pnas.0506580102.
Article
PubMed
PubMed Central
Google Scholar
Chen JJ, Wang SJ, Tsai CA, Lin CJ: Selection of differentially expressed genes in microarray data analysis. Pharmacogenomics J. 2006
Google Scholar
Rubin E: Circumventing the cut-off for enrichment analysis. Brief Bioinform. 2006, 7 (2): 202-203. 10.1093/bib/bbl013.
Article
PubMed
Google Scholar
Gonda T, Maouyo D, Rees SE, Montrose MH: Regulation of intracellular pH gradients by identified Na/H exchanger isoforms and a short-chain fatty acid. Am J Physiol. 1999, 276 (1 Pt 1): G259-70.
PubMed
Google Scholar
Wiesner RJ, Hornung TV, Garman JD, Clayton DA, O'Gorman E, Wallimann T: Stimulation of mitochondrial gene expression and proliferation of mitochondria following impairment of cellular energy transfer by inhibition of the phosphocreatine circuit in rat hearts. J Bioenerg Biomembr. 1999, 31 (6): 559-567. 10.1023/A:1005417011436.
Article
PubMed
Google Scholar