Purdy LH, Schmidt RA: Status of cacao witches' broom: Biology, epidemiology, and management. Annu Rev Phytopathol. 1996, 34: 573-594. 10.1146/annurev.phyto.34.1.573.
PubMed
CAS
Google Scholar
Aime MC, Phillips-Mora W: The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia. 2005, 97 (5): 1012-1022. 10.3852/mycologia.97.5.1012.
PubMed
CAS
Google Scholar
Griffith GW, Nicholson J, Nenninger A, Birch RN, Hedger JN: Witches' brooms and frosty pods: two major pathogens of cacao. New Zeal J Bot. 2003, 41 (3): 423-435.
Google Scholar
Evans HC: Cacao diseases – The trilogy revisited. Phytopathology. 2007, 97 (12): 1640-1643. 10.1094/PHYTO-97-12-1640.
PubMed
Google Scholar
Pereira JL, Ram A, Figuereido JM, de Almeida LC: La primera aparición de la "escoba de bruja" en la principal área productora de cacao del Brasil. Turrialba. 1989, 39 (7): 459-461.
Google Scholar
Pereira JL, deAlmeida LCC, Santos SM: Witches' broom disease of cocoa in Bahia: Attempts at eradication and containment. Crop Protection. 1996, 15 (8): 743-752. 10.1016/S0261-2194(96)00049-X.
Google Scholar
Evans HC: Pleomorphism in Crinipellis perniciosa, Causal Agent of Witches Broom Disease of Cocoa. Trans Br Mycol Soc. 1980, 74 (Jun): 515-523.
Google Scholar
Griffith GW, Hedger JN: Dual culture of Crinipellis perniciosa and potato callus. Eur J Plant Pathol. 1994, 100 (6): 371-379. 10.1007/BF01874805.
Google Scholar
Delgado JC, Cook AA: Nuclear condition of basidia, basidiospores, and mycelium of Marasmius perniciosus. Can J Bot. 1976, 54 (1–2): 66-72. 10.1139/b76-009.
Google Scholar
Rincones J, Meinhardt LW, Vidal BC, Pereira GA: Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches' broom disease of Theobroma cacao. Mycol Res. 2003, 107 (Pt 4): 452-458. 10.1017/S0953756203007597.
PubMed
CAS
Google Scholar
Rincones J, Mazotti GD, Griffith GW, Pomela A, Figueira A, Leal GA, Queiroz MV, Pereira JF, Azevedo RA, Pereira GA, Meinhardt LW: Genetic variability and chromosome-length polymorphisms of the witches' broom pathogen Crinipellis perniciosa from various plant hosts in South America. Mycol Res. 2006, 110 (Pt 7): 821-832. 10.1016/j.mycres.2006.05.002.
PubMed
CAS
Google Scholar
Formighieri EF, Tiburcio RA, Armas ED, Medrano FJ, Shimo H, Carels N, Góes-Neto A, Cotomacci C, Carazzolle MF, Sardinha-Pinto N, Rincones J, Digiampietri L, Carraro DM, Azeredo-Espin AM, Reis SF, Deckmann AC, Gramacho K, Gonçalves MS, Moura Neto JP, Barbosa LV, Meinhardt LW, Cascardo JCM, Pereira GAG: The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109 kb in size and contains a stable integrated plasmid. Mycol Res. 2008, 112: 1136-1152. 10.1016/j.mycres.2008.04.014.
PubMed
CAS
Google Scholar
Scarpari LM, Meinhardt LW, Mazzafera P, Pomella AW, Schiavinato MA, Cascardo JC, Pereira GA: Biochemical changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. J Exp Bot. 2005, 56 (413): 865-877. 10.1093/jxb/eri079.
PubMed
CAS
Google Scholar
Gesteira Ada S, Micheli F, Ferreira CF, Cascardo JC: Isolation and purification of functional total RNA from different organs of cacao tree during its interaction with the pathogen Crinipellis perniciosa. Biotechniques. 2003, 35 (3): 494-496. 498–500
PubMed
Google Scholar
Pirovani CP, Carvalho HA, Machado RC, Gomes DS, Alvim FC, Pomella AW, Gramacho KP, Cascardo JC, Pereira GA, Micheli F: Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches' broom disease. Electrophoresis. 2008, 29 (11): 2391-2401. 10.1002/elps.200700743.
PubMed
CAS
Google Scholar
Lima JO, dos Santos JK, Pereira JF, de Resende ML, de Araujo EF, de Queiroz MV: Development of a transformation system for Crinipellis perniciosa, the causal agent of witches' broom in cocoa plants. Curr Genet. 2003, 42 (4): 236-240.
PubMed
CAS
Google Scholar
Filho DF, Pungartnik C, Cascardo JC, Brendel M: Broken hyphae of the basidiomycete Crinipellis perniciosa allow quantitative assay of toxicity. Curr Microbiol. 2006, 52 (5): 407-412. 10.1007/s00284-005-0405-3.
PubMed
CAS
Google Scholar
Meinhardt LW, Bellato CM, Rincones J, Azevedo RA, Cascardo JC, Pereira GA: In vitro production of biotrophic-like cultures of Crinipellis perniciosa, the causal agent of witches' broom disease of Theobroma cacao. Curr Microbiol. 2006, 52 (3): 191-196. 10.1007/s00284-005-0182-z.
PubMed
CAS
Google Scholar
Garcia O, Macedo JA, Tiburcio R, Zaparoli G, Rincones J, Bittencourt LM, Ceita GO, Micheli F, Gesteira A, Mariano AC, Schiavinato MA, Medrano FJ, Meinhardt LW, Pereira GA, Cascardo JC: Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao. Mycol Res. 2007, 111 (Pt 4): 443-455. 10.1016/j.mycres.2007.01.017.
PubMed
CAS
Google Scholar
Rincones J, Scarpari LM, Carazzolle MF, Mondego JMC, Formighieri EF, Barau JG, Costa GGL, Carraro DM, Brentani HP, Vilas-Boas LA, Oliveira BV, Sabha M, Dias R, Cascardo JM, Azevedo RA, Meinhardt LW, Pereira GAG: Differential gene expression between the biotrophic-like and saprotrophic mycelia of the Witches' broom pathogen Moniliophthora perniciosa. Mol Plant Microbe Interact. 2008, 21 (7): 891-908. 10.1094/MPMI-21-7-0891.
PubMed
CAS
Google Scholar
Gesteira AS, Micheli F, Carels N, Da Silva AC, Gramacho KP, Schuster I, Macedo JN, Pereira GA, Cascardo JC: Comparative Analysis of Expressed Genes from Cacao Meristems Infected by Moniliophthora perniciosa. Ann Bot (Lond). 2007, 100 (1): 129-140. 10.1093/aob/mcm092.
CAS
Google Scholar
Leal GA, Albuquerque PSB, Figueira A: Genes differentially expressed in Theobroma cacao associated with resistance to witches' broom disease caused by Crinipellis perniciosa. Mol Plant Pathol. 2007, 8 (3): 279-292. 10.1111/j.1364-3703.2007.00393.x.
PubMed
CAS
Google Scholar
Munch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB: The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol. 2008, 165 (1): 41-51. 10.1016/j.jplph.2007.06.008.
PubMed
Google Scholar
Meinhardt LW, Rincones J, Bailey BA, Aime MC, Griffith GW, Zhang D, Pereira GA: Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe?. Mol Plant Pathol. 2008, 9 (5): 577-588. 10.1111/j.1364-3703.2008.00496.x.
PubMed
Google Scholar
James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schussler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R: Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature. 2006, 443 (7113): 818-822. 10.1038/nature05110.
PubMed
CAS
Google Scholar
Bouck J, Miller W, Gorrell JH, Muzny D, Gibbs RA: Analysis of the quality and utility of random shotgun sequencing at low redundancies. Genome Res. 1998, 8 (10): 1074-1084.
PubMed
CAS
PubMed Central
Google Scholar
Branscomb E, Predki P: On the high value of low standards. J Bacteriol. 2002, 184 (23): 6406-6409. 10.1128/JB.184.23.6406-6409.2002. discussion 6409
PubMed
CAS
PubMed Central
Google Scholar
Fraser CM, Eisen JA, Nelson KE, Paulsen IT, Salzberg SL: The value of complete microbial genome sequencing (you get what you pay for). J Bacteriol. 2002, 184 (23): 6403-6405. 10.1128/JB.184.23.6403-6405.2002. discusion 6405
PubMed
CAS
PubMed Central
Google Scholar
Gardner SN, Lam MW, Smith JR, Torres CL, Slezak TR: Draft versus finished sequence data for DNA and protein diagnostic signature development. Nucleic Acids Res. 2005, 33 (18): 5838-5850. 10.1093/nar/gki896.
PubMed
CAS
PubMed Central
Google Scholar
Taudien S, Ebersberger I, Glockner G, Platzer M: Should the draft chimpanzee sequence be finished?. Trends Genet. 2006, 22 (3): 122-125. 10.1016/j.tig.2005.12.007.
PubMed
CAS
Google Scholar
Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB, Delcher AL, Pop M, Wang W, Fraser CM, Venter JC: The dog genome: survey sequencing and comparative analysis. Science. 2003, 301 (5641): 1898-1903. 10.1126/science.1086432.
PubMed
Google Scholar
Green P: 2× genomes-does depth matter?. Genome Res. 2007, 17 (11): 1547-1549. 10.1101/gr.7050807.
PubMed
CAS
Google Scholar
Woolfit M, Rozpedowska E, Piskur J, Wolfe KH: Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot Cell. 2007, 6 (4): 721-733. 10.1128/EC.00338-06.
PubMed
CAS
PubMed Central
Google Scholar
Lander ES, Waterman MS: Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics. 1988, 2 (3): 231-239. 10.1016/0888-7543(88)90007-9.
PubMed
CAS
Google Scholar
Wendl MC, Waterston RH: Generalized gap model for bacterial artificial chromosome clone fingerprint mapping and shotgun sequencing. Genome Res. 2002, 12 (12): 1943-1949. 10.1101/gr.655102.
PubMed
CAS
PubMed Central
Google Scholar
Wendl MC, Yang SP: Gap statistics for whole genome shotgun DNA sequencing projects. Bioinformatics. 2004, 20 (10): 1527-1534. 10.1093/bioinformatics/bth120.
PubMed
CAS
Google Scholar
Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007, 23 (9): 1061-1067. 10.1093/bioinformatics/btm071.
PubMed
CAS
Google Scholar
Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the elusive mis-assembly. Genome Biol. 2008, 9 (3): R55-10.1186/gb-2008-9-3-r55.
PubMed
PubMed Central
Google Scholar
Zhang M, Gish W: Improved spliced alignment from an information theoretic approach. Bioinformatics. 2006, 22 (1): 13-20. 10.1093/bioinformatics/bti748.
PubMed
Google Scholar
Stanke M, Steinkamp R, Waack S, Morgenstern B: AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004, W309-312. 10.1093/nar/gkh379. 32 Web Server
Korf I: Gene finding in novel genomes. BMC Bioinformatics. 2004, 5: 59-10.1186/1471-2105-5-59.
PubMed
PubMed Central
Google Scholar
Allen JE, Majoros WH, Pertea M, Salzberg SL: JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of human genes in the ENCODE regions. Genome Biol. 2006, 7 (Suppl 1): S9 1-13. 10.1186/gb-2006-7-s1-s9.
PubMed
Google Scholar
Enright AJ, van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002, 30 (7): 1575-1584. 10.1093/nar/30.7.1575.
PubMed
CAS
PubMed Central
Google Scholar
Enright AJ, Kunin V, Ouzounis CA: Protein families and TRIBES in genome sequence space. Nucleic Acids Res. 2003, 31 (15): 4632-4638. 10.1093/nar/gkg495.
PubMed
CAS
PubMed Central
Google Scholar
Tekaia F, Latge JP: Aspergillus fumigatus: saprophyte or pathogen?. Curr Opin Microbiol. 2005, 8 (4): 385-392. 10.1016/j.mib.2005.06.017.
PubMed
CAS
Google Scholar
Kupfer DM, Reece CA, Clifton SW, Roe BA, Prade RA: Multicellular ascomycetous fungal genomes contain more than 8000 genes. Fungal Genet Biol. 1997, 21 (3): 364-372. 10.1006/fgbi.1997.0982.
PubMed
CAS
Google Scholar
Koski LB, Gray MW, Lang BF, Burger G: AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics. 2005, 6: 151-10.1186/1471-2105-6-151.
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao LN, He SQ, Hurwitz DI, Jackson JD, Ke ZX, Krylov D, Lanczycki CJ, Liebert CA, Liu CL, Lu F, Lu SN, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang DC, Bryant SH: CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 2007, 35: D237-D240. 10.1093/nar/gkl951.
PubMed
CAS
PubMed Central
Google Scholar
Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 2005, 33 (19): 6083-6089. 10.1093/nar/gki892.
PubMed
CAS
PubMed Central
Google Scholar
Gonzalez FJ, Nebert DW: Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990, 6 (6): 182-186. 10.1016/0168-9525(90)90174-5.
PubMed
CAS
Google Scholar
Saier MH, Tran CV, Barabote RD: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006, D181-186. 10.1093/nar/gkj001. 34 Database
Stergiopoulos I, Zwiers LH, De Waard MA: The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol Plant Microbe Interact. 2003, 16 (8): 689-698. 10.1094/MPMI.2003.16.8.689.
PubMed
CAS
Google Scholar
Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, Goffeau A: The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol. 2001, 3 (2): 207-214.
PubMed
CAS
Google Scholar
Benito B, Garciadeblas B, Rodriguez-Navarro A: Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology. 2002, 148 (Pt 4): 933-941.
PubMed
CAS
Google Scholar
Apel K, Hirt H: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004, 55: 373-399. 10.1146/annurev.arplant.55.031903.141701.
PubMed
CAS
Google Scholar
Able AJ: Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma. 2003, 221 (1–2): 137-143. 10.1007/s00709-002-0064-1.
PubMed
CAS
Google Scholar
Govrin EM, Levine A: The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol. 2000, 10 (13): 751-757. 10.1016/S0960-9822(00)00560-1.
PubMed
CAS
Google Scholar
Rio MCS, Oliveira BV, Thomazella DP, Fracassi da Silva JA, Pereira GAG: Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of the Witches' Broom Disease of cacao. Curr Microbiol. 2008, 56 (4): 363-370. 10.1007/s00284-007-9091-7.
PubMed
Google Scholar
Ceita GO, Macêdo JNA, Santos TB, Alemanno L, Gesteira AS, Micheli F, Mariano AC, Gramacho KP, Silva DC, Meinhardt LW, Mazzafera P, Pereira GAG, Cascardo JM: Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci. 2007, 173 (2): 106-117. 10.1016/j.plantsci.2007.04.006.
CAS
Google Scholar
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A: Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact. 2006, 19 (7): 711-724. 10.1094/MPMI-19-0711.
PubMed
CAS
Google Scholar
Kim KS, Min JY, Dickman MB: Oxalic Acid Is an Elicitor of Plant Programmed Cell Death during Sclerotinia sclerotiorum Disease Development. Mol Plant Microbe Interact. 2008, 21 (5): 605-612. 10.1094/MPMI-21-5-0605.
PubMed
CAS
Google Scholar
Bolker M: Ustilago maydis-a valuable model system for the study of fungal dimorphism and virulence. Microbiology. 2001, 147 (Pt 6): 1395-1401.
PubMed
CAS
Google Scholar
de Arruda MCCMR, Ferreira MASV, Felipe MSS: Comparison of Crinipellis perniciosa isolates from Brazil by ERIC repetitive element sequence-based PCR genomic fingerprinting. Plant Pathology. 2003, 52 (2): 236-244. 10.1046/j.1365-3059.2003.00819.x.
CAS
Google Scholar
Andebrhan T, Figueira A, Yamada MM, Cascardo J, Furtek DB: Molecular fingerprinting suggests two primary outbreaks of witches' broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brazil. Eur J Plant Pathol. 1999, 105 (2): 167-175. 10.1023/A:1008716000479.
CAS
Google Scholar
Bartley BGD: Cacao (Theobroma cacao L.). Breeding for Durable Resistance in Perennial Crops. FAO Plant Production and Protection Paper. 1986, 70: 25-42.
Google Scholar
Larrondo LF, Canessa P, Vicuna R, Stewart P, Wymelenberg Vanden A, Cullen D: Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes. Mol Genet Genomics. 2007, 277 (1): 43-55. 10.1007/s00438-006-0167-z.
PubMed
CAS
Google Scholar
Poulter RT, Goodwin TJ: DIRS-1 and the other tyrosine recombinase retrotransposons. Cytogenet Genome Res. 2005, 110 (1–4): 575-588. 10.1159/000084991.
PubMed
CAS
Google Scholar
DeMarco R, Venancio TM, Verjovski-Almeida S: SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily. BMC Evol Biol. 2006, 6: 89-10.1186/1471-2148-6-89.
PubMed
PubMed Central
Google Scholar
Rep M, Does van der HC, Cornelissen BJ: Drifter, a novel, low copy hATlike transposon in Fusarium oxysporum is activated during starvation. Fungal Genet Biol. 2005, 42 (6): 546-553. 10.1016/j.fgb.2005.03.007.
PubMed
CAS
Google Scholar
Kempken F, Kuck U: restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol Cell Biol. 1996, 16 (11): 6563-6572.
PubMed
CAS
PubMed Central
Google Scholar
Monroy F, Sheppard DC: Taf1: a class II transposon of Aspergillus fumigatus. Fungal Genet Biol. 2005, 42 (7): 638-645. 10.1016/j.fgb.2005.04.003.
PubMed
CAS
Google Scholar
Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR: P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci USA. 2001, 98 (22): 12572-12577. 10.1073/pnas.211442198.
PubMed
CAS
PubMed Central
Google Scholar
Robert-Seilaniantz A, Navarro L, Bari R, Jones JD: Pathological hormone imbalances. Curr Opin Plant Biol. 2007, 10 (4): 372-379. 10.1016/j.pbi.2007.06.003.
PubMed
CAS
Google Scholar
Sun S-K, Snyder WC: The bakanae disease of the rice plant. Fusarium: diseases, biology and taxonomy. Edited by: Nelson TAT PE, Cook RJ. 1981, The Pennsylvania State University Press, 104-113.
Google Scholar
Rademacher W, Graebe JE: Gibberellin A4 produced by Sphaceloma manihoticola, the cause of the superelongation disease of cassava (Manihot esculenta). Biochem Biophys Res Commun. 1979, 91 (1): 35-40. 10.1016/0006-291X(79)90579-5.
PubMed
CAS
Google Scholar
Tudzynski B, Kawaide H, Kamiya Y: Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr Genet. 1998, 34 (3): 234-240. 10.1007/s002940050392.
PubMed
CAS
Google Scholar
Bastos CN, Andebrhan T: Presença de giberelina em basidiosporos de Crinipelis perniciosa (Stahel) Singer. Fitopatologia Brasileira. 1981, 6: 417-423.
Google Scholar
Kilaru A, Bailey BA, Hasenstein KH: Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol Lett. 2007, 274 (2): 238-244. 10.1111/j.1574-6968.2007.00837.x.
PubMed
CAS
Google Scholar
Wolf FT: The Production of Indole Acetic Acid by Ustilago-Zeae, and Its Possible Significance in Tumor Formation. Proc Natl Acad Sci USA. 1952, 38 (2): 106-111. 10.1073/pnas.38.2.106.
PubMed
CAS
PubMed Central
Google Scholar
Maor R, Haskin S, Levi-Kedmi H, Sharon A: In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol. 2004, 70 (3): 1852-1854. 10.1128/AEM.70.3.1852-1854.2004.
PubMed
CAS
PubMed Central
Google Scholar
Perley JE, Stowe BB: On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine. Plant Physiol. 1966, 41 (2): 234-237. 10.1104/pp.41.2.234.
PubMed
CAS
PubMed Central
Google Scholar
Prusty R, Grisafi P, Fink GR: The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2004, 101 (12): 4153-4157. 10.1073/pnas.0400659101.
PubMed
CAS
PubMed Central
Google Scholar
Ross JJ, O'Neill DP, Smith JJ, Kerckhoffs LH, Elliott RC: Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J. 2000, 21 (6): 547-552. 10.1046/j.1365-313x.2000.00702.x.
PubMed
CAS
Google Scholar
Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA: The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 2006, 11 (4): 176-183. 10.1016/j.tplants.2006.02.006.
PubMed
CAS
Google Scholar
Swarup R, Parry G, Graham N, Allen T, Bennett M: Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol. 2002, 49 (3–4): 411-426.
PubMed
CAS
Google Scholar
Steffens B, Sauter M: Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol. 2005, 139 (2): 713-721. 10.1104/pp.105.064469.
PubMed
CAS
PubMed Central
Google Scholar
Pierik R, Cuppens ML, Voesenek LA, Visser EJ: Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol. 2004, 136 (2): 2928-2936. 10.1104/pp.104.045120.
PubMed
CAS
PubMed Central
Google Scholar
Maor R, Shirasu K: The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol. 2005, 8 (4): 399-404. 10.1016/j.mib.2005.06.008.
PubMed
CAS
Google Scholar
Dodds PN, Lawrence GJ, Catanzariti AM, Ayliffe MA, Ellis JG: The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell. 2004, 16 (3): 755-768. 10.1105/tpc.020040.
PubMed
CAS
PubMed Central
Google Scholar
Kemen E, Kemen AC, Rafiqi M, Hempel U, Mendgen K, Hahn M, Voegele RT: Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact. 2005, 18 (11): 1130-1139. 10.1094/MPMI-18-1130.
PubMed
CAS
Google Scholar
Rooney HC, Van't Klooster JW, Hoorn van der RA, Joosten MH, Jones JD, de Wit PJ: Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science. 2005, 308 (5729): 1783-1786. 10.1126/science.1111404.
PubMed
CAS
Google Scholar
Kamper J, Kahmann R, Bolker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O, Perlin MH, Wosten HA, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Perez-Martin J, Feldbrugge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, Gonzalez-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Munch K, Rossel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Hauser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schluter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Guldener U, Munsterkotter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW: Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature. 2006, 444 (7115): 97-101. 10.1038/nature05248.
PubMed
Google Scholar
Rep M: Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol Lett. 2005, 253 (1): 19-27. 10.1016/j.femsle.2005.09.014.
PubMed
CAS
Google Scholar
Zaparoli G, Garcia O, Medrano FJ, Tiburcio R, Costa GL, Pereira GAG: Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of Witches' Broom disease in cacao, encoding necrosis inducing proteins similar to cerato platanins. Mycol Res. 2008
Google Scholar
Nonaka T, Dohmae N, Hashimoto Y, Takio K: Amino acid sequences of metalloendopeptidases specific for acyl-lysine bonds from Grifola frondosa and Pleurotus ostreatus fruiting bodies. J Biol Chem. 1997, 272 (48): 30032-30039. 10.1074/jbc.272.48.30032.
PubMed
CAS
Google Scholar
Sepcic K, Berne S, Potrich C, Turk T, Macek P, Menestrina G: Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem. 2003, 270 (6): 1199-1210. 10.1046/j.1432-1033.2003.03480.x.
PubMed
CAS
Google Scholar
Wymelenberg Vanden A, Minges P, Sabat G, Martinez D, Rajangam AS, Teeri TT, Gaskell J, Kersten PJ, Cullen D: The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol. 2005, 118 (1): 17-34. 10.1016/j.jbiotec.2005.03.010.
PubMed
Google Scholar
Garcia-Conesa MT, Kroon PA, Ralph J, Mellon FA, Colquhoun IJ, Saulnier L, Thibault JF, Williamson G: A cinnamoyl esterase from Aspergillus niger can break plant cell wall cross-links without release of free diferulic acids. Eur J Biochem. 1999, 266 (2): 644-652. 10.1046/j.1432-1327.1999.00910.x.
PubMed
CAS
Google Scholar
van Loon LC, Rep M, Pieterse CM: Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006, 44: 135-162. 10.1146/annurev.phyto.44.070505.143425.
PubMed
CAS
Google Scholar
Broekaert WF, Terras FRG, BPA C: Induced and preformed antimicrobial proteins. Mechanisms of Resistance to Plant Diseases. Edited by: Slusarenko AJFR, Van Loon LC. 2000, Dordrecht: Kluwer, 371-477.
Google Scholar
Hu X, Reddy AS: Nucleotide sequence of a cDNA clone encoding a thaumatin-like protein from Arabidopsis. Plant Physiol. 1995, 107 (1): 305-306. 10.1104/pp.107.1.305.
PubMed
CAS
PubMed Central
Google Scholar
Punja Z: Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. Can J Plant Pathol. 2005, 27: 291-296.
CAS
Google Scholar
Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, van Campenhout S, Proost P, Courtin CM, Delcour JA: TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J. 2007, 403 (3): 583-591. 10.1042/BJ20061291.
PubMed
CAS
PubMed Central
Google Scholar
Miosga T, Schaaff-Gerstenschlager I, Chalwatzis N, Baur A, Boles E, Fournier C, Schmitt S, Velten C, Wilhelm N, Zimmermann FK: Sequence analysis of a 33.1 kb fragment from the left arm of Saccharomyces cerevisiae chromosome X, including putative proteins with leucine zippers, a fungal Zn(II)2-Cys6 binuclear cluster domain and a putative alpha 2-SCB-alpha 2 binding site. Yeast. 1995, 11 (7): 681-689. 10.1002/yea.320110709.
PubMed
CAS
Google Scholar
Sakamoto Y, Watanabe H, Nagai M, Nakade K, Takahashi M, Sato T: Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence. Plant Physiol. 2006, 141 (2): 793-801. 10.1104/pp.106.076679.
PubMed
CAS
PubMed Central
Google Scholar
Chaves FC, Gianfagna TJ: Necrotrophic phase of Monihophthora perniciosa causes salicylic acid accumulation in infected stems of cacao. Physiol Mol Plant Pathol. 2006, 69 (1–3): 104-108. 10.1016/j.pmpp.2007.02.003.
CAS
Google Scholar
Aro N, Pakula T, Penttila M: Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev. 2005, 29 (4): 719-739. 10.1016/j.femsre.2004.11.006.
PubMed
CAS
Google Scholar
Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Munsterkotter M, Nelson D, O'Donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC: The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007, 317 (5843): 1400-1402. 10.1126/science.1143708.
PubMed
CAS
Google Scholar
Millar AH, Day DA: Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett. 1996, 398 (2–3): 155-158. 10.1016/S0014-5793(96)01230-6.
PubMed
CAS
Google Scholar
Juarez O, Guerra G, Martinez F, Pardo JP: The mitochondrial respiratory chain of Ustilago maydis. Biochim Biophys Acta. 2004, 1658 (3): 244-251. 10.1016/j.bbabio.2004.06.005.
PubMed
CAS
Google Scholar
Juarez O, Guerra G, Velazquez I, Flores-Herrera O, Rivera-Perez RE, Pardo JP: The physiologic role of alternative oxidase in Ustilago maydis. Febs J. 2006, 273 (20): 4603-4615. 10.1111/j.1742-4658.2006.05463.x.
PubMed
CAS
Google Scholar
Joseph-Horne T, Hollomon DW, Wood PM: Fungal respiration: a fusion of standard and alternative components. Biochim Biophys Acta. 2001, 1504 (2–3): 179-195.
PubMed
CAS
Google Scholar
Idnurm A, Howlett BJ: Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot Cell. 2002, 1 (5): 719-724. 10.1128/EC.1.5.719-724.2002.
PubMed
CAS
PubMed Central
Google Scholar
Sakai S, Nishide T, Munir E, Baba K, Inui H, Nakano Y, Hattori T, Shimada M: Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose. Microbiology. 2006, 152 (Pt 6): 1857-1866. 10.1099/mic.0.28702-0.
PubMed
CAS
Google Scholar
Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ: The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol. 2003, 47 (6): 1601-1612. 10.1046/j.1365-2958.2003.03412.x.
PubMed
CAS
Google Scholar
Segers G, Bradshaw N, Archer D, Blissett K, Oliver RP: Alcohol oxidase is a novel pathogenicity factor for Cladosporium fulvum, but aldehyde dehydrogenase is dispensable. Mol Plant Microbe Interact. 2001, 14 (3): 367-377. 10.1094/MPMI.2001.14.3.367.
PubMed
CAS
Google Scholar
Daniel G, Volc J, Filonova L, Plihal O, Kubatova E, Halada P: Characteristics of Gloeophyllum trabeum Alcohol Oxidase, an Extracellular Source of H2O2 in Brown Rot Decay of Wood. Appl Environ Microbiol. 2007, 73 (19): 6241-6253. 10.1128/AEM.00977-07.
PubMed
CAS
PubMed Central
Google Scholar
Nakagawa T, Miyaji T, Yurimoto H, Sakai Y, Kato N, Tomizuka N: A methylotrophic pathway participates in pectin utilization by Candida boidinii. Appl Environ Microbiol. 2000, 66 (10): 4253-4257. 10.1128/AEM.66.10.4253-4257.2000.
PubMed
CAS
PubMed Central
Google Scholar
Fall R, Benson AA: Leaf methanol – The simplest natural product from plants. Trends Plant Sci. 1996, 1 (9): 296-301.
Google Scholar
Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W: Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot. 2006, 57 (15): 4025-4032. 10.1093/jxb/erl173.
PubMed
CAS
Google Scholar
Wei Y, Shen W, Dauk M, Wang F, Selvaraj G, Zou J: Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen. J Biol Chem. 2004, 279 (1): 429-435. 10.1074/jbc.M308363200.
PubMed
CAS
Google Scholar
Santos RX, Melo SC, Cascardo JC, Brendel M, Pungartnik C: Carbon source-dependent variation of acquired mutagen resistance of Moniliophthora perniciosa: Similarities in natural and artificial systems. Fungal Genet Biol. 2008
Google Scholar
Nakayama A, Park S, Zheng-Jun X, Nakajima M, Yamaguchi I: Immunohistochemistry of active gibberellins and gibberellin-inducible alpha-amylase in developing seeds of morning glory. Plant Physiol. 2002, 129 (3): 1045-1053. 10.1104/pp.010921.
PubMed
CAS
PubMed Central
Google Scholar
Pellier AL, Lauge R, Veneault-Fourrey C, Langin T: CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol Microbiol. 2003, 48 (3): 639-655. 10.1046/j.1365-2958.2003.03451.x.
PubMed
CAS
Google Scholar
Divon HH, Fluhr R: Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett. 2007, 266 (1): 65-74. 10.1111/j.1574-6968.2006.00504.x.
PubMed
CAS
Google Scholar
Marzluf GA: Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev. 1997, 61 (1): 17-32.
PubMed
CAS
PubMed Central
Google Scholar
Lau G, Hamer JE: Regulatory genes controlling MPG1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell. 1996, 8 (5): 771-781. 10.1105/tpc.8.5.771.
PubMed
CAS
PubMed Central
Google Scholar
Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998, 8 (3): 175-185.
PubMed
CAS
Google Scholar
Chou HH, Holmes MH: DNA sequence quality trimming and vector removal. Bioinformatics. 2001, 17 (12): 1093-1104. 10.1093/bioinformatics/17.12.1093.
PubMed
CAS
Google Scholar
Usuka J, Zhu W, Brendel V: Optimal spliced alignment of homologous cDNA to a genomic DNA template. Bioinformatics. 2000, 16 (3): 203-211. 10.1093/bioinformatics/16.3.203.
PubMed
CAS
Google Scholar
Gremme G, Brendel V, Sparks ME, Kurtz S: Engineering a software tool for gene structure prediction in higher organisms. Inform Software Technol. 2005, 47 (15): 965-978. 10.1016/j.infsof.2005.09.005.
Google Scholar
Lowe TM, Eddy SR: tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25 (5): 955-964. 10.1093/nar/25.5.955.
PubMed
CAS
PubMed Central
Google Scholar
Karp PD, Paley S, Romero P: The Pathway Tools software. Bioinformatics. 2002, 18 (Suppl 1): S225-232.
PubMed
Google Scholar
Nielsen H, Engelbrecht J, Brunak S, von Heijne G: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 1997, 10 (1): 1-6. 10.1093/protein/10.1.1.
PubMed
CAS
Google Scholar
Collart MA, Oliviero S: Preparation of yeast RNA by extraction with hot acidic phenol. Current Protocols in Molecular Biology. Edited by: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Hoboken KS. 2006, New Jersey: John Wiley & Sons, Inc
Google Scholar