Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules. 2009;14:2373–93.
Article
CAS
PubMed
Google Scholar
Sachdeva H, Sehgal R, Kaur. Studies on the protective and immunomodulatory efficacy of Withania somnifera along with cisplatin against experimental visceral leishmaniasis. Parasitol Res. 2013;112:2269–80.
Article
PubMed
Google Scholar
Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci. 2012;109:3510–5.
Article
CAS
PubMed Central
PubMed
Google Scholar
VenMurthy MR, Ranjekar PK, Ramassamy C, Deshpande M. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: ashwagandha. Cent Nerv Syst Agents Med Chem. 2010;10:238–46.
Article
CAS
Google Scholar
Singh N, Verma P, Pandey BR, Gilca M. Role of Withania somnifera in prevention and treatment of cancer: an overview. Int J Pharm Sci Drug Res. 2011;3:274–9.
Google Scholar
Mansour HH, Hafez FH. Protective effect of Withania somnifera against radiation-induced hepatotoxicity in rats. Ecotoxicol Environ Saf. 2012;80:14–9.
Article
Google Scholar
Chaurasiya ND, Sangwan RS, Misra LN, Tuli R, Sangwan NS. Metabolic clustering of a core collection of Indian ginseng Withania somnifera Dunal through DNA, isoenzyme, polypeptide and withanolide profile diversity. Fitoterapia. 2009;80:496–505.
Article
CAS
PubMed
Google Scholar
Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS. Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma. 2012;250:539–49.
Article
PubMed
Google Scholar
Misra L, Lal P, Sangwan RS, Sangwan NS, Uniyal GC, Tuli R. Unusually sulfated and oxygenated steroids from Withania somnifera. Phytochemistry. 2005;66:2702–7.
Article
CAS
PubMed
Google Scholar
Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli. Purification and characterization of a novel glucosyltransferase specific to 27b-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochem Biophys Acta. 2007;1774:1199–207.
CAS
PubMed
Google Scholar
Chaurasia ND, Sangwan NS, Sabir F, Misra L, Sangwan RS. Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep. 2012;31:1889–97.
Article
Google Scholar
Prajapati ND, Purohit SS, Sharma AK, Kumar. A handbook of medicinal plants. Jodhpur, India: Agrobios; 2007.
Google Scholar
Ramawat KG, Goyal S. The Indian herbal drugs scenario in global perspectives. In: Merillon JM, editor. Bioactive molecules and medicinal plants. Berlin, Heidelberg New York: Springer; 2008. p. 331.
Chapter
Google Scholar
Sharada M, Ahuja A, Suri KA, Vij SP, Khajuria RK, Verma V, et al. Withanolide production by in vitro cultures of Withania somnifera (L.) and its association with differentiation. Biol Plantarum. 2007;51:161–4.
Article
CAS
Google Scholar
Sivanandhan G, Arun M, Mayavan S, Rajesh M, Mariashibu TS, Manickavasagam M, et al. Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind Crop Prod. 2012;37:124–9.
Article
CAS
Google Scholar
Bernard F, Moghbel N, Hassannejad S. Treatment of licorice seeds with colchicine: changes in seedling DNA levels and anthocyanin and glycyrrhizic acid contents of derived callus cultures. Nat Prod Commun. 2012;7:1457–60.
CAS
PubMed
Google Scholar
Sharma P, Yadav S, Srivastava A, Shrivastava N. Methyl jasmonate mediates upregulation of bacoside A production in shootcultures of Bacopa monnieri. Biotechnol Lett. 2013;35:1121–5.
Article
CAS
PubMed
Google Scholar
Marchev A, Christiane H, Sibylle S, Vasil G, Juliane S, Thomas B, et al. Sage in vitro cultures: a promising tool for the production of bioactive terpenes and phenolic substances. Biotechnol Lett. 2014;36:211.
Article
CAS
PubMed
Google Scholar
Sharma LK, Madina BR, Chaturvedi P, Sangwan RS, Tuli R. Molecular cloning and characterization of one member of 3b-hydroxy sterol glucosyltransferase gene family in Withania somnifera. Arch Biochem Biophys. 2007;460:48–55.
Article
CAS
PubMed
Google Scholar
Gupta P, Goel R, Pathak S, Srivastava A, Singh SP, Sangwan RS, et al. De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One. 2013;8:e62714.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jayakodi M, Lee SC, Park HS, Jang WJ, Lee YS, Choi BS, et al. Transcriptome Profiling and comparative analysis of Panax ginseng adventitious roots. J Ginseng Res. 2014. http://dx.doi.org/10.1016/j.jgr.2014.05.008.
Luo H, Sun C, Sun Y, Wu Q, Li Y. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics. 2011;12 Suppl 5:S5.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sun C, Li Y, Wu Q, Luo H, Sun Y. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics. 2010;11:262.
Article
PubMed Central
PubMed
Google Scholar
Li C, Zhu Y, Guo X, Sun C, Luo H. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics. 2013;14:245.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hyun TK, Rim Y, Jang H-J, Kim CH, Park J, Kumar R, et al. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis. Plant Mol Biol. 2012;79:413–27.
Article
CAS
PubMed
Google Scholar
Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics. 2011;12:131.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li H, Dong Y, Yang J, Liu X, Wang Y, Yao N, et al. De novo transcriptome of safflower and the identification of putative gene for oleosin and the biosynthesis of flavonoids. PLoS One. 2012;7:e30987.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu S, Li W, Wu Y, Chen C, Lei J. De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS One. 2013;8:e48156.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang Y, Pan Y, Liu Z, Zhu X, Zhai L, Xu L, et al. De novo transcriptome sequencing of radish (Raphanus sativus L) and analysis of major genes involved in glucosinolate metabolism. BMC Genomics. 2013;14:836.
Article
CAS
PubMed Central
PubMed
Google Scholar
Senthil K, Wasnik NG, Kim YJ, Yang DC. Generation and analysis of expressed sequence tags from leaf and root of Withania somnifera (Ashwgandha). Mol Biol Rep. 2010;37:893–902.
Article
CAS
PubMed
Google Scholar
Dasgupta MG, George BS, Bhatia A, Sidhu OP. Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis – related genes during salicylic acid signaling. PLoS One. 2014;9:e94803.
Article
Google Scholar
Grabherr MG, Haas BJ, Yassour M. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;15:644–52.
Article
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
PubMed Central
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed Central
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sharma V, Gupta AP, Bhandari P, Gupta RC, Singh B. A validated and densitometric HPTLC method for the quantification of Withaferin-A and Withanolide-A in different plant parts of two morphotypes of Withania somnifera. Chromatographia. 2007;66:801–4.
Article
CAS
Google Scholar
Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, et al. Alterations in germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. S Afr J Bot. 2007;73:190–5.
Article
Google Scholar
Awasthi D, Meitei KV, Misra R, Ali SA. Validation of harvesting period for obtaining optimum concentrations of Withanolides from Withania somnifera (L.) Dunal at different phenological stages of plant life. Indan J Trop Biodiv. 2009;16:129–32.
Google Scholar
Hahn EJ, Kim YS, Yu KW, Jeong CS, Paek KY. Adventitious root cultures of Panax ginseng c.v. meyer and ginsedoside production through large-scale bioreactor system. J Plant Biotechnol. 2003;5:1–6.
Google Scholar
Sangwan RS, Chaurasiya ND, Sangwan PL, Misra LN, Tuli R, Sangwan NS. Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol Plant. 2008;133:278–87.
Article
CAS
PubMed
Google Scholar
Nagella P, Murthy HN. Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresour Technol. 2010;17:6735–9.
Article
Google Scholar
Onrubia M, Cusidó RM, Ramirez K, Hernández-Vázquez L, Moyano E, Bonfill M, et al. Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem. 2013;20:880–91.
CAS
PubMed
Google Scholar
Abdin MZ, Kiran U, Aquil S. Molecular cloning and structural characterization of HMG-CoA reductase gene from Catharanthus roseus (L) G Donn Cv Albus. Indian J Biotech. 2012;11:16–22.
CAS
Google Scholar
Cunillera N, Arro M, Delourme D, Karst F, Boronat A, Ferrer A. Arabidopsis thaliana contains two differentially expressed farnesyl diphosphate synthase genes. J Biol Chem. 1996;271:7774–80.
Article
CAS
PubMed
Google Scholar
Dhar N, Rana S, Bhat WW, Razdan S, Pandith SA, Khan S, et al. Dynamics of withanolide biosynthesis in relation to temporal expression pattern of metabolic genes in Withania somnifera (L.) Dunal: a comparative study in two morpho-chemovariants. Mol Biol Rep. 2013;40:7007–16.
Article
CAS
PubMed
Google Scholar
Sakakibara KY. Functional genomics of family 1 glucosyltransferase in Arabidopsis. Plant Biotech J. 2009;26:267–74.
Article
Google Scholar
Dale S, Arro M, Becerra B, Morrice NG, Boronat A, Hardie DG, et al. Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. Eur J Biochem. 1995;233:506–13.
Article
CAS
PubMed
Google Scholar
Choi D, Ward BL, Bostock RM. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor. Plant Cell. 1992;4:1333–44.
Article
CAS
PubMed Central
PubMed
Google Scholar
Diarra S, He J, Wang J, Li J. Ethylene treatment improves diosgenin accumulation in in vitro cultures of Dioscorea zingiberensis via up-regulation of CAS and HMGR gene expression. Electron J Biotechn. 2013;16:6.
Google Scholar
Gupta P, Akhtar N, Tewari SK, Sangwan RS, Trivedi PK. Differential expression of farnesyl diphosphate synthase gene from Withania somnifera in different chemotypes and in response to elicitors. Plant Growth Regul. 2011;65:93–100.
Article
CAS
Google Scholar
Hidaka Y, Satoh T, Kamei T. Regulation of squalene epoxidase in HepG2 cells. J Lipid Res. 1990;31:2087–94.
CAS
PubMed
Google Scholar
Abe I, Prestwich GD. Squalene epoxidase and oxidosqualene:lanosterol cyclase-key enzymes in cholesterol biosynthesis. In: Cane DE, editor. Comprehensive natural products chemistry. Volume 2. Oxford: Elsevier; 1999. p. 267–98.
Chapter
Google Scholar
Razdan S, Bhat WW, Rana S, Dhar N, Lattoo SK, Dhar RS, et al. Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep. 2012;40:905–16.
Article
PubMed
Google Scholar
Khatun S, Ali MB, Hahn E, Paek K. Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot. 2008;64:279–85.
Article
CAS
Google Scholar
Golbeck JH, Cammarata KV. Spinach thylakoid polyphenol oxidase isolation, activation properties of the native chloroplast enzyme. Plant Physiol. 1981;67:977–84.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rabe R, Kreeb KH. Enzyme activities and chlorophyll and protein content in plants as indicators of air pollution. Environ Pollut. 1979;19:119–36.
Article
CAS
Google Scholar
Fusco D, Colloca G, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2:377–87.
CAS
PubMed Central
PubMed
Google Scholar
Lee J, Hahm ER, Singh SV. Withaferin A inhibits activation of signal transducer and activation of transcription 3 in human breast cancer cell. Carcinogenesis. 2010;31:1991–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wasnik NG, Muthusamy M, Chellappan S, Vaidhyanathan V, Pulla R, Senthil K, et al. Establishment of in vitro root cultures and analysis of secondary metabolites in Indian Ginseng - Withania somnifera. Korean J Plant Res. 2009;22:584–91.
Google Scholar
Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7:e30619.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tank JG, Thaker VS. Changes in DNA and RNA level with endoreduplication can be determined using α-naphthyl red dye. CIBTech J Bio Protocols. 2012;1:23–31.
Article
Google Scholar
Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA, editors. Methods Mol Biol. Volume 132. Totowa, NJ: Humana Press Inc.; 2000. p. 365–86.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Δ ΔCt method. Methods. 2001;25:402–8.
Patel JB, Lahiri SK, Shah MB. Development of a new method for identification and estimation of Withania somnifera root, and a method for quantitative analysis of withaferin A in young and old roots. J Planar Chromatogr- Mod TLC. 2009;22:283–6.
Article
CAS
Google Scholar
Jirge SS, Tatke PA, Gabhe SY. Development and validation of a novel HPTLC method for simultaneous estimation of betasitosteroldglucoside and withaferin A. Int J Pharm Pharm Sci. 2011;3:227–30.
CAS
Google Scholar
Ansari AQ, Ahmed SA, Waheed MA, Juned S. Extraction and determination of antioxidant activity of Withania somnifera Dunal. Eur J Exp Biol. 2013;3:502–7.
Google Scholar
Beauchamp BC, Fedovich. Superoxide dismutase assay and an assay applicable to acrylamide gel. Anal Biochem. 1976;10:276–87.
Google Scholar
Ensiminger K, Vamos – Vigyazo E. Inactivation of polyphenol oxidase and depletion of O-dihydroxyphenol content during enzymatic browning of fruit tissue. J Amer. 1995;12:1–9.
Google Scholar
Malik CP, Singh MB. Plant enzymology and histo-enzymology – A text manual. New Delhi: Kalyani Publishers; 1980. p. 30–54.
Google Scholar
Habig WH, Palist MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.
CAS
PubMed
Google Scholar
Roe JH, Kuether CA. Determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenyl hydrazine derivative of ascorbic acid. J Biol Chem. 1953;143:399–406.
Google Scholar
Bayfield RF, Cole ER. Colorimetric estimation of vitamin A with trichloroacetic acid. Meth Enzymol. 1980;67:189–95.
Article
CAS
PubMed
Google Scholar
Backer H, Frank O, De Angells B, Feingold S. Plasma tocopherol in man at various times after ingesting free or ocetylaned tocopherol. Nutr Rep Int. 1980;21:531–6.
Google Scholar