Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008;320(5882):1444–9.
Article
CAS
PubMed
Google Scholar
Neale DB, Kremer A. Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011;12(2):111–22.
Article
CAS
PubMed
Google Scholar
Neale D, Wegrzyn J, Stevens K, Zimin A, Puiu D, Crepeau M, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15(3):R59.
Article
PubMed Central
PubMed
Google Scholar
Birol I, Raymond A, Jackman S, Pleasance S, Coope R, Taylor G, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497(7451):579–84.
Article
CAS
PubMed
Google Scholar
Wachowiak W, Boratyńska K, Cavers S. Geographical patterns of nucleotide diversity and population differentiation in three closely related European pine species in the Pinus mugo complex. Bot J Linn Soc. 2013;172(2):225–38.
Article
Google Scholar
Joosen R, Lammers M, Balk P, Bronnum P, Konings M, Perks M, et al. Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiol. 2006;26:1297–313.
Article
CAS
PubMed
Google Scholar
Boratyńska K, Boratyński A. Taxonomic differences among closely related pines Pinus sylvestris, P. mugo, P. uncinata, P. rotundata and P. uliginosa as revealed in needle sclerenchyma cells. Flora. 2007;202(7):555–69.
Article
Google Scholar
Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, et al. Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet. 1996;93(1–2):215–21.
Article
CAS
PubMed
Google Scholar
Wachowiak W, Palme AE, Savolainen O. Speciation history of three closely related pines Pinus mugo (T.), P. uliginosa (N.) and P. sylvestris (L.). Mol Ecol. 2011;20(8):1729–43.
Article
PubMed
Google Scholar
Jasińska AK, Wachowiak W, Muchewicz E, Boratyńska K, Montserrat JM, Boratyński A. Cryptic hybrids between Pinus uncinata and P. sylvestris. Bot J Linn Soc. 2010;163(4):473–85.
Article
Google Scholar
Parchman T, Geist K, Grahnen J, Benkman C, Buerkle CA. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics. 2010;11(1):180.
Article
PubMed Central
PubMed
Google Scholar
Grotkopp E, Rejmanek M, Sanderson MJ, Rost TL. Evolution of genome size in pines (Pinus) and its life-history correlates: Supertree analyses. Evolution. 2004;58(8):1705–29.
Article
CAS
PubMed
Google Scholar
Hurme P, Sillanpaa MJ, Arjas E, Repo T, Savolainen O. Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics. 2000;156(3):1309–22.
CAS
PubMed Central
PubMed
Google Scholar
Pyhäjärvi T, Garcia-Gil MR, Knürr T, Mikkonen M, Wachowiak W, Savolainen O. Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics. 2007;177(3):1713–24.
Article
PubMed Central
PubMed
Google Scholar
Wachowiak W, Balk P, Savolainen O. Search for nucleotide diversity patterns of local adaptation in dehydrins and other cold-related candidate genes in Scots pine (Pinus sylvestris L.). Tree Genetics & Genomes. 2009;5(1):117–32.
Article
Google Scholar
Kujala S, Savolainen O. Sequence variation patterns along a latitudinal cline in Scots pine (Pinus sylvestris): signs of clinal adaptation? Tree Genetics & Genomes. 2012;8(6):1451–67.
Article
Google Scholar
Wachowiak W, Salmela MJ, Ennos RA, Iason G, Cavers S. High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland. Heredity. 2010;106:775–87.
Article
PubMed Central
PubMed
Google Scholar
Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, et al. The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol Ecol. 2012;21(22):5530–45.
Article
CAS
PubMed
Google Scholar
Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, et al. SNP markers trace familial linkages in a cloned population of Pinus taeda-prospects for genomic selection. Tree Genetics & Genomes. 2012;8:1307–18.
Article
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protocols. 2013;8(8):1494–512.
Article
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD et al.: Evolution of Genome Size and Complexity in Pinus. PLoS ONE 2009, 4(2). doi:10.1371/journal.pone.0004332.
Rocheta M, Cordeiro J, Oliveira M, Miguel C. PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster. Planta. 2007;225(3):551–62.
Article
CAS
PubMed
Google Scholar
Kovach A, Wegrzyn JL, Parra G, Holt C, Bruening GE, Loopstra CA, et al. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics. 2010;11(1):420.
Article
PubMed Central
PubMed
Google Scholar
Schmid R, Blaxter M. annot8r: GO, EC and KEGG annotation of EST datasets. Bmc Bioinformatics. 2008;9(1):180.
Article
PubMed Central
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed Central
PubMed
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed Central
PubMed
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nei M. Molecular evolutionary genetics. New York: Columbia University Press; 1987.
Google Scholar
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.
CAS
PubMed Central
PubMed
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–7.
Article
PubMed
Google Scholar