Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science. 2003;301:336–8.
Article
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.
Article
CAS
PubMed
Google Scholar
Xing S, Salinas M, Höhmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell. 2011;22:3935–50.
Article
Google Scholar
Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, et al. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol. 2009;151:2120–32.
Article
PubMed Central
PubMed
Google Scholar
Sun G, Stewart CN, Xiao P, Zhang B. MicroRNA expression analysis in the cellulosic biofuel crop Switchgrass Panicum virgatum under abiotic stress. PLoS One. 2012;7:e32017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zhen Y, et al. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol. 2012;159:721–38.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol. 2012;12:182.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25:2383–99.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20:3407–25.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell. 2005;17:1397–411.
Article
PubMed Central
CAS
PubMed
Google Scholar
Szarzynska B, Sobkowiak L, Pant BD, Balazadeh S, Scheible WR, Mueller-Roeber B, et al. Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Res. 2009;37:3083–93.
Article
PubMed Central
CAS
PubMed
Google Scholar
Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA. 2008;14:814–21.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lucas SJ, Budak H. Sorting the wheat from the chaff: identifying miRNAs in genomic survey sequences of Triticum aestivum chromosome 1AL. PLoS One. 2012;7:e40859.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wei B, Cai T, Zhang R, Li A, Huo N, Li S, et al. Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat Triticum aestivum L. and Brachypodium distachyon L Beauv. Funct Integr Genomics. 2009;9:499–511.
Article
CAS
PubMed
Google Scholar
Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, et al. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol. 2011;11:61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kantar M, Akpinar BA, Valárik M, Lucas SJ, Doležel J, Hernández P, et al. Subgenomic analysis of microRNAs in polyploid wheat. Funct Integr Genomics. 2012;12:465–79.
Article
CAS
PubMed
Google Scholar
Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496(7443):87–90.
Article
CAS
PubMed
Google Scholar
Wang B, Sun YF, Song N, Wan XJG, Feng H, Huang LL, et al. Identification of UV-B-induced microRNAs in wheat. Genet Mol Res. 2013;12:4213–21.
Article
CAS
PubMed
Google Scholar
Han J, Kong ML, Xie H, Sun QP, Nan ZJ, Zhang QZ, et al. Identification of miRNAs and their targets in wheat Triticum aestivum L. by EST analysis. Genet Mol Res. 2013;12:3793–805.
Article
CAS
PubMed
Google Scholar
Kurtoglu KY, Kantar M, Lucas SJ, Budak H. Unique and conserved microRNAs in wheat chromosome 5D revealed by next-generation sequencing. PLoS One. 2013;8:1932–6203.
Article
Google Scholar
Meng F, Liu H, Wang K, Liu L, Wang S, Zha Y, et al. Development-associated microRNAs in grains of wheat Triticum aestivum L. BMC Plant Biol. 2013;13:140.
Article
PubMed Central
PubMed
Google Scholar
Pandey B, Gupta OP, Pandey DM, Sharma I, Sharma P. Identification of new stress-induced microRNA and their targets in wheat using computational approach. Plant Signal Behav. 2013;8:e23932.
Article
PubMed Central
PubMed
Google Scholar
Li YF, Zheng Y, Jagadeeswaran G, Sunkar R. Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches. Plant Sci. 2013;203–204:17–24.
Article
PubMed
Google Scholar
Deng P, Nie X, Wang L, Cui L, Liu P, Tong W, et al. Computational identification and comparative analysis of miRNAs in wheat group 7 chromosomes. Plant Mol Biol Rep. 2014;32:487–500.
Article
CAS
Google Scholar
Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, et al. mRNA and small RNA transcriptomes reveal Insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid Wheat. Plant Cell. 2014;26:1878–900.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun F, Guo G, Du J, Guo W, Peng H, Ni Z, et al. Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Bio. 2014;14:142.
Article
Google Scholar
Han R, Jian C, Lv J, Yan Y, Chi Q, Li Z, et al. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genomics. 2014;15:289.
Article
PubMed Central
PubMed
Google Scholar
Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S. A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One. 2014;9(4):e95800.
Article
PubMed Central
PubMed
Google Scholar
Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, et al. Cloning and characterization of microRNAs from wheat Triticum aestivum L. Genome Biol. 2007;8:R96.
Article
PubMed Central
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39(Database issue):D152–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Z, Yu J, Li D, Zhang Z, Liu F, Zhou X, et al. PMRD: plant microRNA database. Nucleic Acids Res. 2010;38(Database issue):D806–13.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res. 2005;5:78–91.
Article
Google Scholar
Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA. Identification and characterization of new plant microRNAs using EST analysis. Cell Res. 2005;15:336–60.
Article
PubMed
Google Scholar
Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, et al. MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell. 2010;22:1074–89.
Article
PubMed Central
CAS
PubMed
Google Scholar
Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, et al. High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Res. 2012;22:163–76.
Article
PubMed Central
CAS
PubMed
Google Scholar
Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008;26:407–15.
Article
PubMed
Google Scholar
Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.
Article
PubMed Central
PubMed
Google Scholar
Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM. miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 2009;37:W68–76.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res. 2011;39:W132–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leclercq M, Diallo AB, Blanchette M. Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res. 2013;41:7200–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, et al. Criteria for annotation of plant microRNAs. Plant Cell. 2008;20:3186–90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 2007;35:W339–44.
Article
PubMed Central
PubMed
Google Scholar
Kadri S, Hinman V, Benos PV. HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinf. 2009;10:S35.
Article
Google Scholar
Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14:787–99.
Article
CAS
PubMed
Google Scholar
Dryanova A, Zakharov A, Gulick PJ. Data mining for miRNAs and their targets in the Triticeae. Genome. 2008;51:433–43.
Article
CAS
PubMed
Google Scholar
Jin W, Li N, Zhang B, Wu F, Li W, Guo A, et al. Identification and verification of microRNA in wheat Triticum aestivum. J Plant Res. 2008;121:351–5.
Article
CAS
PubMed
Google Scholar
Yin ZJ, Shen FF. Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res. 2010;9:1186–96.
Article
CAS
PubMed
Google Scholar
Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli E, Meyersm BC, et al. Massive analysis of rice small RNAs: Mechanistic implications of regulated miRNAs and variants for differential target RNA cleavage. Plant Cell. 2011;23:4185–207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of miRNA genes. Plant Cell. 2011;23:431–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. RNA. 2003;9:277–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A. 2010;107:15269–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ling KH, Brautigan PJ, Hahn CN, Daish T, Rayner JR, Cheah PS, et al. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA. BMC Genomics. 2011;12:176.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dinger ME, Pang KC, Mercer TR, Mattick JS. Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol. 2008;4:e1000176.
Article
PubMed Central
PubMed
Google Scholar
Wagatsuma T, Ishikawa S, Uemura M, Mitsuhashi W, Kawamura T, Khan MSH, et al. Plasma membrane lipids are the powerful components for early stage aluminum tolerance in triticale. Soil Sci Plant Nutr. 2005;51:701–4.
Article
CAS
Google Scholar
Khan MS, Tawaraya K, Sekimoto H, Koyama H, Kobayashi Y, Murayama T, et al. Relative abundance of Delta 5-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice. Physiol Plant. 2009;135:73–83.
Article
CAS
PubMed
Google Scholar
Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell. 2005;17:2204–16.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gutierrez L, Mongelard G, Floková K, Pacurar DI, Novák O, Staswick P, et al. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell. 2012;6:2515–27.
Article
Google Scholar
Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, et al. Structure and functional analysis of wheat ICE Inducer of CBF expression genes. Plant Cell Physiol. 2008;49:1237–49.
Article
CAS
PubMed
Google Scholar
Kim JS, Kim KA, Oh TR, Park CM, Kang H. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 2008;49:1563–71.
Article
CAS
PubMed
Google Scholar
Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, et al. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci. 2013;14:12729–63.
Article
PubMed Central
PubMed
Google Scholar
Janska A, Marsik P, Zelenkova S, Ovesna J. Cold stress and acclimation: what is important for metabolic adjustment? Plant Biol (Stuttg). 2010;12:395–405.
Article
CAS
Google Scholar
Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F. The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomics. 2007;277:533–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liang G, Yu D. Reciprocal regulation among miR395, APS and SULTR2,1 in Arabidopsis thaliana. Plant Signal Behav. 2010;10:1257–9.
Article
Google Scholar
Zhao X, Liu X, Guo C, Gu J, Kai X. Identification and characterization of microRNAs from wheat Triticum aestivum L. under phosphorus deprivation. J. Plant Biochem Biotechnol. 2013;22:113–23.
Article
CAS
Google Scholar
Wang L, Huang H, Fan Y, Kong B, Hu H, Hu K, et al. Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxid Med Cell Longev. 2014;2014:960362.
PubMed Central
PubMed
Google Scholar
Paolacci AR, Tanzarella OA, Porceddu E, Varotto S, Ciaffi M. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Mol Genet Genomics. 2007;278:689–708.
Article
CAS
PubMed
Google Scholar
Colaiacovo M, Lamontanara A, Bernardo L, Alberici R, Crosatti C, Giusti L, et al. On the complexity of miRNA-mediated regulation in plants: novel insights into the genomic organization of plant miRNAs. Biol Direct. 2012;7:15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun. 2013;4:1566.
Article
PubMed Central
PubMed
Google Scholar
Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;4:196–203.
Article
Google Scholar
Reeves PH, Murtas G, Dash S, Coupland G. Early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development. 2002;129:5349–61.
Article
CAS
PubMed
Google Scholar
Murtas G, Reeves PH, Fu Y-F, Bancroft I, Dean C, Coupland G. A nuclear protease required for flowering time regulation in Arabidopsis reduces the abundance of small ubiquitin-related modifier conjugates. Plant Cell. 2003;15:2308–19.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li X, Hongwu B, Dafeng S, Shengyun M, Ning H, Junhui W, et al. Flowering time control in ornamental gloxinia (Sinningia speciosa). Ann Bot. 2013;111:791–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc. 2008;3:190–6.
Article
PubMed
Google Scholar
Ribeiro-dos-Santos Â, Khayat A, Silva A, Alencar D, Lobato J, Luz L, et al. Ultra-deep sequencing reveals the microRNAs expression pattern of the human stomach. PLoS One. 2010;5:e13205.
Article
PubMed Central
PubMed
Google Scholar
Schulte J, Marschall T, Martin M, Rosenstie P, Mestdagh P, Schlierf S, et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 2010;38:5919–28.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ondov BD, Varadarajan A, Passalacqua KD, Bergman NH. Efficient mapping of Applied Biosystems SOLiD sequence data to a reference genome for functional genomics applications. Bioinformatics. 2008;24:2776–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smit AFA, Hubley R, Green P. RepeatMasker. 2010. Open-3.0.
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7.
Article
CAS
PubMed
Google Scholar
Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31:3429–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kal AJ, Van Zonneveld AJ, Benes V, Vandenberg M, Koerkamp MG, Albermann K, et al. Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell. 1999;10:1859–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc. 1995;85:289–300.
Google Scholar
Bonnet E, He Y, Billiau K, Vandepeer Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics. 2010;26:1566–8.
Article
CAS
PubMed
Google Scholar
Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics. 2009;25:3045–6.
Article
PubMed Central
CAS
PubMed
Google Scholar