Willis RE, White CR, Merritt DJ. Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm. J Comp Physiol B. 2010;181(4):477–86.
PubMed
Google Scholar
Meyer-Rochow VB. Glowworms: a review of Arachnocampa spp. and kin. Luminescence. 2007;22(3):251–65.
Article
CAS
PubMed
Google Scholar
Baker CH, Graham GC, Scott KD, Cameron SL, Yeates DK, Merritt DJ. Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae). Mol Phylogenet Evol. 2008;48(2):506–14.
Article
CAS
PubMed
Google Scholar
Amaral DT, Arnoldi FGC, Rosa SP, Viviani VR. Molecular phylogeny of neotropical bioluminescent beetles (Coleoptera: Elateroidea) in southern and central Brazil. Luminescence. 2014;29(5):412–22.
Article
CAS
PubMed
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7.
Article
CAS
PubMed
Google Scholar
Haddock SHD, Moline MA, Case JF. Bioluminescence in the sea. Ann Rev Mar Sci. 2010;2(1):443–93.
Article
PubMed
Google Scholar
Lloyd JE. Bioluminescence and communication in insects. Annu Rev Entomol. 1983;28(1):131–60.
Article
Google Scholar
Sharpe ML, Hastings JW, Krause KL. Luciferases and light-emitting accessory proteins: structural biology. In: eLS. John Wiley & Sons, Ltd; 2014, doi: 10.1002/9780470015902.a0003064.pub2.
Lee J. Bioluminescence of the Australian glow-worm Arachnocampa richardsae Harrison. Photochem Photobiol. 1976;24(3):279–85.
Article
CAS
Google Scholar
Shimomura O, Johnson FH, Haneda Y. Observation on the biochemistry of luminescence in the New Zealand glowworm Arachnocampa luminosa. In: Johnson FH, Haneda Y, editors. Bioluminescence in progress. Princeton: Princeton University Press; 1966. p. 487–94.
Google Scholar
Viviani VR, Hastings JW, Wilson T. Two bioluminescent diptera: the North American Orfelia fultoni and the Australian Arachnocampa flava. Similar niche, different bioluminescence systems. Photochem Photobiol. 2002;75(1):22–7.
Article
CAS
PubMed
Google Scholar
Gatenby JB. Notes on the New Zealand glow-worm, Bolitophila (Arachnocampa) luminosa. Trans Proc R Soc N Z. 1959;87:291–314.
Google Scholar
Green LF. The fine structure of the light organ of the New Zealand glow-worm Arachnocampa luminosa (Diptera: Mycetophilidae). Tissue Cell. 1979;11(3):457–65.
Article
CAS
PubMed
Google Scholar
Shimomura O. Bioluminescence: chemical principles and methods. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2006.
Book
Google Scholar
Frank L, Krasitskaya V. Application of enzyme bioluminescence for medical diagnostics. Adv Biochem Eng Biotechnol. 2014;144:175–97.
PubMed
Google Scholar
Michelini E, Cevenini L, Calabretta M, Calabria D, Roda A. Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement) in drug discovery. Anal Bioanal Chem. 2014;406(23):5531–9.
Article
CAS
PubMed
Google Scholar
Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107(1):1–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Finseth FR, Harrison RG. A comparison of next generation sequencing technologies for transcriptome assembly and utility for RNA-Seq in a non-model bird. PLoS One. 2014;9(10):e108550.
Article
PubMed Central
PubMed
Google Scholar
Schnitzler CE, Pang K, Powers ML, Reitzel AM, Ryan JF, Simmons D, et al. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol. 2012;10:107.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A. 2005;102(8):3004–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mandel MJ, Stabb EV, Ruby EG. Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: focus on point miscalls and artefactual expansions. BMC Genomics. 2008;9:138.
Article
PubMed Central
PubMed
Google Scholar
Wang Z, Hervey WJ, Kim S, Lin B, Vora GJ. Complete genome sequence of the bioluminescent marine bacterium Vibrio harveyi ATCC 33843 (392 [MAV]). Genome Announc. 2015;3(1):e01493–01414.
PubMed Central
PubMed
Google Scholar
Tanaka Y, Kasuga D, Oba Y, Hase S, Sato K, Oba Y, et al. Genome sequence of the luminous mushroom Mycena chlorophos for searching fungal bioluminescence genes. In: 18th International Symposium on Bioluminescence and Chemiluminescence: 2014; Uppsala, Sweden. 2014. Luminescence 29 (Suppl. 21): 47–48.
Google Scholar
Delroisse J, Flammang P, Mallefet J. Marine luciferases: are they really taxon-specific? A putative luciferase evolved by co-option in an echinoderm lineage. In: 18th International Symposium on Bioluminescence and Chemiluminescence: 2014; Uppsala, Sweden. 2014. Luminescence 29 (Suppl. 21): 15–16.
Google Scholar
Leung NL, Taketa DA, Torres E, Oakley TH. Origin of luciferase genes in cypridinid ostracods (Crustacea). In: Society for Integrative and Comparative Biology: 2013; San Francisco, CA. 2013. P1.163.
Google Scholar
Wong JM, Pérez-Moreno JL, Chan T-Y, Frank TM, Bracken-Grissom HD. Phylogenetic and transcriptomic analyses reveal the evolution of bioluminescence and light detection in marine deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda). Mol Phylogenet Evol. 2015;83:278–92.
Article
CAS
PubMed
Google Scholar
Roy S, Letourneau L, Morse D. Cold-induced cysts of the photosynthetic dinoflagellate Lingulodinium polyedrum have an arrested circadian bioluminescence rhythm and lower levels of protein phosphorylation. Plant Physiol. 2014;164(2):966–77.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roy S, Beauchemin M, Dagenais-Bellefeuille S, Letourneau L, Cappadocia M, Morse D. The Lingulodinium circadian system lacks rhythmic changes in transcript abundance. BMC Biol. 2014;12(1):107.
Article
PubMed Central
PubMed
Google Scholar
Silva JR, Amaral DT, Hastings JW, Wilson T, Viviani VR. A transcriptional and proteomic survey of Arachnocampa luminosa (Diptera: Keroplatidae) lanterns gives insights into the origin of bioluminescence from the Malpighian tubules in Diptera. Luminescence. 2015, doi: 10.1002/bio.2850 [Epub ahead of print].
Viviani VR, Carmargo IA, Amaral DT. A transcriptional survey of the cDNA library of Macrolampis sp2 firefly lanterns (Coleoptera: Lampyridae). Comp Biochem Physiol Part D Genomics Proteomics. 2013;8(1):82–5.
Article
CAS
PubMed
Google Scholar
Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 2013;30(3):301–4.
Article
PubMed Central
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Gulick AM. Conformational dynamics in the acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol. 2009;4(10):811–27.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindner HA, Lunin VV, Alary A, Hecker R, Cygler M, Ménard R. Essential roles of zinc ligation and enzyme dimerization for catalysis in the aminoacylase-1/M20 family. J Biol Chem. 2003;278(45):44496–504.
Article
CAS
PubMed
Google Scholar
Perrier J, Durand A, Giardina T, Puigserver A. Catabolism of intracellular N-terminal acetylated proteins: involvement of acylpeptide hydrolase and acylase. Biochimie. 2005;87(8):673–85.
Article
CAS
PubMed
Google Scholar
Petushkov VN, Dubinnyi MA, Tsarkova AS, Rodionova NS, Baranov MS, Kublitski VS, et al. A novel type of luciferin from the Siberian luminous earthworm Fridericia heliota: structure elucidation by spectral studies and total synthesis. Angew Chem Int Ed. 2014;53(22):5566–8.
Article
CAS
Google Scholar
Al-Mulla F, Bitar MS, Taqi Z, Yeung KC. RKIP: Much more than Raf Kinase inhibitory protein. J Cell Physiol. 2013;228(8):1688–702.
Article
CAS
PubMed
Google Scholar
Ranson H, Hemingway J. Mosquito glutathione transferases. Methods Enzymol. 2005;401:226–41.
Article
CAS
PubMed
Google Scholar
Ranson H, Prapanthadara LA, Hemingway J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae. Biochem J. 1997;324(1):97–102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Viviani VR. The origin, diversity, and structure function relationships of insect luciferases. Cell Mol Life Sci. 2002;59(11):1833–50.
Article
CAS
PubMed
Google Scholar
Wood KV. The chemical mechanism and evolutionary development of beetle bioluminescence. Photochem Photobiol. 1995;62(4):662–73.
Article
CAS
Google Scholar
Oba Y, Sato M, Ohta Y, Inouye S. Identification of paralogous genes of firefly luciferase in the Japanese firefly, Luciola cruciata. Gene. 2006;368:53–60.
Article
CAS
PubMed
Google Scholar
Viviani VR, Prado RA, Arnoldi FCG, Abdalla FC. An ancestral luciferase in the malpighi tubules of a non-bioluminescent beetle! Photochem Photobiol Sci. 2009;8(1):57–61.
Article
CAS
PubMed
Google Scholar
Mofford DM, Reddy GR, Miller SC. Latent luciferase activity in the fruit fly revealed by a synthetic luciferin. Proc Natl Acad Sci U S A. 2014;111(12):4443–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Müller WEG, Kasueske M, Wang X, Schröder HC, Wang Y, Pisignano D, et al. Luciferase a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula. Cell Mol Life Sci. 2009;66(3):537–52.
Article
PubMed
Google Scholar
Hastings JW. Progress and perspectives on bioluminescence: from luminous organisms to molecular mechanisms. In: Roda A, editor. Chemiluminescence and bioluminescence: past, present and future. Cambridge, UK: The Royal Society of Chemistry; 2011. p. 91–112.
Google Scholar
Lopes-Marques M, Cunha I, Reis-Henriques M, Santos M, Castro LF. Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates. BMC Evol Biol. 2013;13(1):271.
Article
PubMed Central
PubMed
Google Scholar
Aronesty E. ea-utils: Command-line tools for processing biological sequencing data. 2011. http://code.google.com/p/ea-utils. Accessed 2014.
Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform. 2010;11:485.
Article
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.
Article
CAS
Google Scholar
Kvam VM, Liu P, Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot. 2012;99(2):248–56.
Article
PubMed
Google Scholar
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.
Article
PubMed Central
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004;5:113.
Article
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4.
Article
CAS
PubMed
Google Scholar
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–9.
Article
CAS
PubMed
Google Scholar
Branchini BR, Magyar RA, Murtiashaw MH, Portier NC. The role of active site residue arginine 218 in firefly luciferase bioluminescence. Biochemistry. 2001;40(8):2410–8.
Article
CAS
PubMed
Google Scholar
Branchini BR, Southworth TL, Murtiashaw MH, Boije H, Fleet SE. A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry. 2003;42(35):10429–36.
Article
CAS
PubMed
Google Scholar
Branchini BR, Southworth TL, Murtiashaw MH, Wilkinson SR, Khattak NF, Rosenberg JC, et al. Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain. Biochemistry. 2005;44(5):1385–93.
Article
CAS
PubMed
Google Scholar
Inouye S. Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cell Mol Life Sci. 2010;67(3):387–404.
Article
CAS
PubMed
Google Scholar
Xu X, Gopalacharyulu P, Seppänen-Laakso T, Ruskeepää A-L, Aye CC, Carson BP, et al. Insulin signaling regulates fatty acid catabolism at the level of CoA activation. PLoS Genet. 2012;8(1):e1002478.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oba Y, Sato M, Inouye S. Cloning and characterization of the homologous genes of firefly luciferase in the mealworm beetle, Tenebrio molitor. Insect Mol Biol. 2006;15(3):293–9.
Article
CAS
PubMed
Google Scholar