Yáñez JM, Houston RD, Newman S. Genetics and genomics of disease resistance in salmonid species. Front Genet. 2014;5:1–13.
Google Scholar
Bishop SC, Woolliams JA. Genomics and disease resistance studies in livestock. Livest Sci. 2014;166:190–8.
Article
PubMed Central
PubMed
Google Scholar
Fryer JL, Hedrick RP. Piscirickettsia salmonis: a Gram-negative intracellular bacterial pathogen of fish. J Fish Dis. 2003;26:251–62.
Article
CAS
PubMed
Google Scholar
Rozas M, Enriquez R. Piscirickettsiosis and Piscirickettsia salmonis in fish: a review. J Fish Dis. 2014;37:163–88.
Article
CAS
PubMed
Google Scholar
Cvitanich J, Garate O, Smith CE. Etiological agent in a Chilean coho disease isolated and confirmed by Koch’s postulates. FHS/AFS Newsletter. 1990;18:1–2.
Google Scholar
Fryer JL, Lannan C, Garces L, Larenas J, Smith P. Isolation of a rickettsiales-like organism from diseased coho salmon (Oncorhynchus kisutch) in Chile. Fish Pathol. 1990;25:107–14.
Article
Google Scholar
Smith PA, Pizarro P, Ojeda P, Contreras J, Oyanedel S, Larenas J. Routes of entry of Piscirickettsia salmonis in rainbow trout Oncorhynchus mykiss. Dis Aquat Organ. 1999;37:165–72.
Article
CAS
PubMed
Google Scholar
Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006;8:1137–44.
Article
CAS
PubMed
Google Scholar
Leal J, Woywood D. Piscirickettsiosis en Chile: avances y perspectivas para su control. Salmociencia. 2007;2:34–42.
Google Scholar
Marshall S, Conejeros P, Zahr M, Olivares J, Gomez F, Cataldo P, et al. Immunological characterization of a bacterial protein isolated from salmonid fish naturally infected with Piscirickettsia salmonis. Vaccine. 2007;25:2095–102.
Article
CAS
PubMed
Google Scholar
Sernapesca. Informe sanitario de salmonicultura en centros marinos 2014. http://www.sernapesca.cl/index.php?option=com_remository&Itemid=246&func=fileinfo&id=11083. Accessed date 15/5/2015.
Cabezas M. Fármacos naturales en el cultivo de Salmonídeos: una alternativa en el control de enfermedades. Salmociencia. 2006;1:27–33.
Google Scholar
Ødegård J, Baranski M, Gjerde B, Gjedrem T. Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res. 2011;42:103–14.
Article
Google Scholar
Yáñez JM, Martínez V. Genetic factors involved in resistance to infectious diseases in salmonids and their application in breeding programmes. Arch Med Vet. 2010;42:1–13.
Article
Google Scholar
Yáñez JM, Bangera R, Lhorente JP, Oyarzún M, Neira R. Quantitative genetic variation of resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Aquaculture. 2013;414–415:155–9.
Article
Google Scholar
Yáñez JM, Lhorente JP, Bassini LN, Oyarzún M, Neira R, Newman S. Genetic co-variation between resistance against both Caligus rogercresseyi and Piscirickettsia salmonis, and body weight in Atlantic salmon (Salmo salar). Aquaculture. 2014;433:295–8.
Article
Google Scholar
Goddard M, Hayes M. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet. 2009;10:381–91.
Article
CAS
PubMed
Google Scholar
Andersson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet. 2004;5:202–12.
Article
CAS
PubMed
Google Scholar
Dekkers JCM. Application of genomic tools to animal breeding. Curr Genomics. 2012;13:207–12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Houston R, Taggart J, Cézard T, Bekaert M, Lowe N, Downing A, et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics. 2014;15:9. doi:10.1186/1471-2164-15-90.
Article
Google Scholar
Yáñez JM, Naswa S, López ME, Bassini L, Cabrejos ME, Gilbey J, Bernatchez L, Norris A, Soto C, Eisenhart J, Simpson B, Neira R, Lhorente JP, Schnable P, Newman S, Mileham A, Deeb N. Development of a 200 K SNP array for Atlantic Salmon: exploiting across continents genetic variation. In: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production. Vancouver; 2014.
Bush WS, Moore JH. Chapter 11: Genome-wide association studies. PLoS Comput Biol. 2012;8(12):e1002822. doi:10.1371/journal.pcbi.1002822.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayes B, Goddard M. Genome-wide association and genomic selection in animal breeding. Genome. 2010;53:876–83.
Article
CAS
PubMed
Google Scholar
Villanueva B, Fernández J, García-Cortés LA, Varona L, Daetwyler HD, Toro MA. Accuracy of genome-wide evaluation for disease resistance in aquaculture breeding programs. J Anim Sci. 2011;89:3433–42.
Article
CAS
PubMed
Google Scholar
Solar II. Use and exchange of salmonid genetic resources relevant for food and aquaculture. Rev Aquac. 2009;1:174–96.
Article
Google Scholar
Norris A. Microsatellite genetic variation between and within farmed and wild Atlantic salmon (Salmo salar) populations. Aquaculture. 1999;180:247–64.
Article
Google Scholar
SNPolisher User Guide (Version 1.4) Affymetrix, Inc. October 14, 2013.
Axiom® Genotyping Solution Data Analysis User Guide, Affymetrix, Inc. http://www.affymetrix.com/support/downloads/manuals/axiom_genotyping_solution_analysis_guide.pdf . Accessed date 15/3/2015.
Aulchenko YS, Ripke S, Isaacs A, van Dujin CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;10:1294–6.
Article
Google Scholar
GenAbel Project Developers. GenABEL Tutorial. 2015. DOI 10.5281/zenodo.19738
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81:559–75.
Article
PubMed Central
CAS
PubMed
Google Scholar
Teyssèdre S, Elsen JM, Ricard A. Statistical distributions of test statistics used for quantitative trait association mapping in structured populations. Genet Sel Evol. 2012;44:32.
Article
PubMed Central
PubMed
Google Scholar
Wei W, Hemani G, Hicks AA, Vitart V, Cabrera-Cardenas C, Navarro P, et al. Characterisation of genome-wide association epistasis signals for serum uric acid in human population isolates. PLoS ONE. 2011;6:e23836. doi:10.1371/journal.pone.0023836.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aulchenko YS, de Koning DJ, Haley C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics. 2007;1:577–85.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hao K, Di X, Cawley S. LdCompare: rapid computation of single- and multiple-marker r2 and genetic coverage. Bioinformatics. 2006;23:252–4.
Article
PubMed
Google Scholar
Di Genova A, Aravena A, Zapata L, González M, Maass A, Iturra P. SalmonDB: a bioinformatics resource for Salmo salar and Oncorhynchus mykiss. Database. 2011. doi:10.1093/database/bar050.
Maly P, Thall AD, Petryniak B, Rogers CE, Smith PL, Marks RM, et al. The (1,3) fucosyltransferase FucT-VII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell. 1996;86:643–53.
Article
CAS
PubMed
Google Scholar
Smith PL, Gersten KM, Petryniak B, Kelly RJ, Rogers C, Natsuka Y, et al. Expression of the a(1,3)fucosyltransferase Fuc-TVII in lymphoid aggregate high endothelial venules correlates with expression of L-selectin ligands. J Biol Chem. 1996;271:8250–9.
Article
CAS
PubMed
Google Scholar
Parisi MG, Benenati G, Cammarata M. Sea bass Dicentrarchus labrax (L.) bacterial infection and confinement stress acts on F-type lectin (DlFBL) serum modulation. J Fish Dis. 2014. doi:10.1111/jfd.12309.
Rise ML, Jones SRM, Brown GD, von Schalburg KR, Davidson WS, Koop BF. Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiol Genomics. 2004;20:21–35.
Article
CAS
PubMed
Google Scholar
Piccinini AM, Midwood KS. Endogenous control of immunity against infection: Tenascin-C regulates TLR4-Mediated inflammation via MicroRNA-155. Cell Reports. 2012;2:914–26.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
PubMed Central
CAS
PubMed
Google Scholar
Stringer S, Wray NR, Kahn RS, Derks EM. Underestimated effect size in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. Plos One. 2011;6:e27964.
Article
PubMed Central
CAS
PubMed
Google Scholar
Goddard M, Hayes BJ. Genomic selection. J Anim Breed Genet. 2007;124:323–30.
Article
CAS
PubMed
Google Scholar
Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177:2389–97.
PubMed Central
CAS
PubMed
Google Scholar
Sonesson AK, Meuwissen THE. Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol. 2009;41:37.
Article
PubMed Central
PubMed
Google Scholar
Ødegård J, Moen T, Santi N, Korsvoll SA, Kjøglum S, Meuwissen THE. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front Genetics. 2014;5:1.
Google Scholar
Ghilardi N, Hongo J, Yi S, Gurney A, de Sauvage FJ. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J Biol Chem. 2002;277:16831–6.
Article
CAS
PubMed
Google Scholar
Dreuw A, Radtke S, Pflanz S, Lippok B, Heinrich PC, Hermanns HM. Characterization of the signaling capacities of the novel gp130-like cytokine receptor. J Biol Chem. 2004;279:36112–20.
Article
CAS
PubMed
Google Scholar
NCBI. Gene ID: 3572. [http://www.ncbi.nlm.nih.gov/gene/?term=3572#summary]. Accessed date 15/6/2015.
Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78:2791–808.
CAS
PubMed
Google Scholar
Katzenback BA, Katakura F, Belosevic M: Regulation of Teleost Macrophage and Neutrophil Cell Development by Growth Factors and Transcription Factors. http://dx.doi.org/10.5772/53589. Accessed date 15/6/2015.
Morrison D. MAP kinase pathways. Cold Spring Harb Perspect Biol. 2012;4:a011254.
Article
PubMed Central
PubMed
Google Scholar
Baud V, Liu Z-G, Bennet B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1998;13:1297–308.
Article
Google Scholar
Blackwell K, Zhang L, Thomas GS, Sun S, Nakano H, Habelhah H. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol Cell Biol. 2008;29:303–14.
Article
PubMed Central
PubMed
Google Scholar