Melis C, Borg ÅA, Espelien IS, Jensen H. Low neutral genetic variability in a specialist puffin hunter: the Norwegian Lundehund. Anim Genet. 2013;44(3):348–51.
Article
PubMed
Google Scholar
Berghoff N, Ruaux CG, Steiner JM, Williams DA. Gastroenteropathy in Norwegian Lundehunds. America. 2007;1:4–7.
Google Scholar
FlesjÅ K, Yri T. Protein-losing enteropathy in the Lundehund. J Small Anim Pract. 1977;18(1):11–23.
Article
PubMed
Google Scholar
Kolbjørnsen Ø, Press CM, Landsverk T. Gastropathies in the Lundehund. APMIS. 1994;102(7–12):647–61.
Article
PubMed
Google Scholar
Littman MP, Dambach DM, Vaden SL, Giger U. Familial protein‐losing enteropathy and protein‐losing nephropathy in Soft Coated Wheaten Terriers: 222 cases (1983–1997). J Vet Intern Med. 2000;14(1):68–80.
CAS
PubMed
Google Scholar
Littman M, Giger U. Familial protein-losing enteropathy (PLE) and/or protein-losing nephropathy (PLN) in Soft-coated Wheaten Terriers (SCWT). J Vet Intern Med. 1990;4:133.
Google Scholar
Dijkstra M, Kraus JS, Bosje JT, Den Hertog E. Protein-losing enteropathy in Rottweilers. Tijdschr Diergeneeskd. 2010;135(10):406–12.
CAS
PubMed
Google Scholar
Lecoindre P, Chevallier M, Guerret S. Protein-losing enteropathy of non neoplastic origin in the dog: a retrospective study of 34 cases. Schweiz Arch Tierheilkd. 2010;152(3):141–6.
Article
CAS
PubMed
Google Scholar
Kimmel SE, Waddell LS, Michel KE. Hypomagnesemia and hypocalcemia associated with protein-losing enteropathy in Yorkshire terriers: five cases (1992–1998). J Am Vet Med Assoc. 2000;217(5):703–6.
Article
CAS
PubMed
Google Scholar
MacLachlan N, Breitschwerdt E, Chambers J, Argenzio R, De Buysscher E. Gastroenteritis of Basenji dogs. Veterinary Pathology Online. 1988;25(1):36–41.
Article
CAS
Google Scholar
Jacobs G, Collins-Kelly L, Lappin M, Tyler D. Lymphocytic-plasmacytic enteritis in 24 dogs. J Vet Intern Med. 1990;4(2):45–53.
Article
CAS
PubMed
Google Scholar
Kathrani A, Lee H, White C, Catchpole B, Murphy A, German A, Werling D, Allenspach K. Association between nucleotide oligomerisation domain two (Nod2) gene polymorphisms and canine inflammatory bowel disease. Vet Immunol Immunopathol. 2014;161(1):32–41.
Article
CAS
PubMed
Google Scholar
Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cézard J-P, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603.
Article
CAS
PubMed
Google Scholar
Vignes S, Bellanger J. Primary intestinal lymphangiectasia (Waldmann’s disease). Orphanet J Rare Dis. 2008;3(5):b1.
Google Scholar
Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 1989;169(1):345–50.
Article
CAS
PubMed
Google Scholar
Zhernakova A, Festen EM, Franke L, Trynka G, van Diemen CC, Monsuur AJ, Bevova M, Nijmeijer RM, van ’t Slot R, Heijmans R, Boezen HM, van Heel DA, van Bodegraven AA, Stokkers PC, Wijmenga C, Crusius JB, Weersma RK. Genetic analysis of innate immunity in Crohn’s disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am J Hum Genet. 2008;82(5):1202–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfahler S, Distl O. Effective population size, extended linkage disequilibrium and signatures of selection in the rare dog breed Lundehund. Plos One. 2015;10(4):e0122680.
Article
PubMed
PubMed Central
Google Scholar
Kropatsch R, Melis C, Stronen AV, Jensen H, Epplen JT: Molecular Genetics of Sex Identification, Breed Ancestry and Polydactyly in the Norwegian Lundehund Breed. J Hered. 2015;106.4:403-406.
Park K, Kang J, Subedi KP, Ha J-H, Park C. Canine polydactyl mutations with heterogeneous origin in the conserved intronic sequence of LMBR1. Genetics. 2008;179(4):2163–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfahler S, Distl O. A massive reduction of the genetic diversity in the Lundehund. Anim Genet. 2014;45(1):154.
Article
CAS
PubMed
Google Scholar
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.
Article
CAS
PubMed
Google Scholar
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metzger J, Karwath M, Tonda R, Beltran S, Agueda L, Gut M, Gut IG, Distl O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics. 2015;16(1):764.
Article
PubMed
PubMed Central
Google Scholar
Järnum S, Kjellman C, Darabi A, Nilsson I, Edvardsen K, Åman P. LEPREL1, a novel ER and Golgi resident member of the Leprecan family. Biochem Biophys Res Commun. 2004;317(2):342–51.
Article
PubMed
Google Scholar
Gross KJ, Pothoulakis C. Role of neuropeptides in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(7):918–32.
Article
PubMed
Google Scholar
Yamamoto H, Morise K, Kusugami K, Furusawa A, Konagaya T, Nishio Y, Kaneko H, Uchida K, Nagai H, Mitsuma T, Nagura H. Abnormal neuropeptide concentration in rectal mucosa of patients with inflammatory bowel disease. J Gastroenterol. 1996;31(4):525–32.
Article
CAS
PubMed
Google Scholar
Vaden SL, Hammerberg B, Davenport DJ, Orton SM, Trogdon MM, Melgarejo LT, VanCamp SD, Williams DA. Food hypersensitivity reactions in Soft Coated Wheaten Terriers with protein-losing enteropathy or protein-losing nephropathy or both: gastroscopic food sensitivity testing, dietary provocation, and fecal immunoglobulin E. J Vet Intern Med. 2000;14(1):60–7.
Article
CAS
PubMed
Google Scholar
Franke A, Hampe J, Rosenstiel P, Becker C, Wagner F, Hasler R, Little RD, Huse K, Ruether A, Balschun T. Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS One. 2007;2(1):e691.
Article
PubMed
PubMed Central
Google Scholar
Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA, Rosenstiel P, Albrecht M, Croucher PJ, Seegert D. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet. 2004;36(5):476–80.
Article
CAS
PubMed
Google Scholar
McGovern DP, Hysi P, Ahmad T, van Heel DA, Moffatt MF, Carey A, Cookson WO, Jewell DP. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet. 2005;14(10):1245–50.
Article
CAS
PubMed
Google Scholar
Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D, Cardon L, Takazoe M, Tanaka T, Ichimori T. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet. 2005;14(22):3499–506.
Article
CAS
PubMed
Google Scholar
Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207–11.
Article
CAS
PubMed
Google Scholar
Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolbjornsen O, Press CM, Landsverk T. Gastropathies in the Lundehund. II. A study of mucin profiles. APMIS. 1994;102(11):801–9.
Article
CAS
PubMed
Google Scholar
Ideno H, Takanabe R, Shimada A, Imaizumi K, Araki R, Abe M, Nifuji A. Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro. Exp Cell Res. 2009;315(3):474–84.
Article
CAS
PubMed
Google Scholar
Suzuki D, Yamada A, Aizawa R, Funato S, Matsumoto T, Suzuki W, Takami M, Miyamoto Y, Suzawa T, Yamamoto M, Baba K, Kamijo R. BMP2 differentially regulates the expression of Gremlin1 and Gremlin2, the negative regulators of BMP function, during osteoblast differentiation. Calcif Tissue Int. 2012;91(1):88–96.
Article
CAS
PubMed
Google Scholar
Zeller R, Zuniga A. Shh and Gremlin1 chromosomal landscapes in development and disease. Curr Opin Genet Dev. 2007;17(5):428–34.
Article
CAS
PubMed
Google Scholar
ten Berge D, Brouwer A, Korving J, Martin JF, Meijlink F. Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development. 1998;125(19):3831–42.
PubMed
Google Scholar
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar
Andrews S: FastQC: A quality control tool for high throughput sequence data. In: Reference Source. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/; 2010.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26(5):589–95.
Article
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome project data processing s: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.
Article
CAS
Google Scholar
Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86.
Article
PubMed
PubMed Central
Google Scholar
Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010;89:19. 10. 11–19.10. 21.
Google Scholar
Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g: Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 2007;35 suppl 2:W193–200.
Article
PubMed
PubMed Central
Google Scholar
Reimand J, Arak T, Vilo J. g:Profiler--a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res. 2011;39(Web Server issue):W307–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41(D1):D377–86.
Article
CAS
PubMed
Google Scholar
McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26(16):2069–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metzger J, Schrimpf R, Philipp U, Distl O. Expression Levels of LCORL Are Associated with Body Size in Horses. PLoS One. 2013;8(2):e56497.
Article
CAS
PubMed
PubMed Central
Google Scholar
He C, Holme J, Anthony J: SNP genotyping: the KASP assay. In: Crop Breeding. New York: Springer; 2014: 75–86.
Metzger J, Wohlke A, Mischke R, Hoffmann A, Hewicker-Trautwein M, Kuch EM, Naim HY, Distl O. A Novel SLC27A4 splice acceptor site mutation in great Danes with ichthyosis. Plos One. 2015;10(10):e0141514.
Article
PubMed
PubMed Central
Google Scholar