Clarkson TW. The toxicology of mercury. Crit Rev Clin Lab Sci. 1997;34(4):369–403.
Article
CAS
PubMed
Google Scholar
Jensen S, Jernelov A. Biological methylation of mercury in aquatic organisms. Nature. 1969;223(5207):753–4.
Article
CAS
PubMed
Google Scholar
Birch RJ, Bigler J, Rogers JW, Zhuang Y, Clickner RP. Trends in blood mercury concentrations and fish consumption among US women of reproductive age, NHANES, 1999–2010. Environ Res. 2014;133:431–8.
Article
CAS
PubMed
Google Scholar
Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol. 2006;36(8):609–62.
Article
CAS
PubMed
Google Scholar
Syversen T, Kaur P. The toxicology of mercury and its compounds. J Trace Elem Med Biol. 2012;26(4):215–26.
Article
CAS
PubMed
Google Scholar
Simmons-Willis TA, Koh AS, Clarkson TW, Ballatori N. Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. Biochem J. 2002;367:239–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakir F, Damluji SF, Aminzaki L, Murtadha M, Khalidi A, Alrawi NY, Tikriti S, Dhahir HI, Clarkson TW, Smith JC, et al. Methylmercury poisoning in Iraq –Interuniversity report. Science. 1973;181(4096):230–41.
Article
CAS
PubMed
Google Scholar
Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25(1):1–24.
Article
CAS
PubMed
Google Scholar
Drevnick PE, Roberts AP, Otter RR, Hammerschmidt CR, Klaper R, Oris JT. Mercury toxicity in livers of northern pike (Esox lucius) from Isle Royale, USA. Comp Biochem Physiol C-Toxicol Pharmacol. 2008;147(3):331–8.
Article
PubMed
Google Scholar
Mela M, Randi MAF, Ventura DF, Carvalho CEV, Pelletier E, Ribeiro CAO. Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotoxicol Environ Saf. 2007;68(3):426–35.
Article
CAS
PubMed
Google Scholar
Lee H, Kim Y, Sim CS, Ham JO, Kim NS, Lee BK. Associations between blood mercury levels and subclinical changes in liver enzymes among South Korean general adults: Analysis of 2008–2012 Korean national health and nutrition examination survey data. Environ Res. 2014;130:14–9.
Article
CAS
PubMed
Google Scholar
Ceccatelli S, Dare E, Moors M. Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact. 2010;188(2):301–8.
Article
CAS
PubMed
Google Scholar
Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol. 2011;256(3):405–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Limke TL, Bearss JJ, Atchison WD. Acute exposure to methylmercury causes Ca2+ dysregulation and neuronal death in rat cerebellar granule cells through an M3 muscarinic receptor-linked pathway. Toxicol Sci. 2004;80(1):60–8.
Article
CAS
PubMed
Google Scholar
Vogel DG, Margolis RL, Mottet NK. The effects of methyl mercury binding to microtubules. Toxicol Appl Pharmacol. 1985;80(3):473–86.
Article
CAS
PubMed
Google Scholar
Yin ZB, Milatovic D, Aschner JL, Syversen T, Rocha JBT, Souza DO, Sidoryk M, Albrecht J, Aschner M. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res. 2007;1131(1):1–10.
Article
CAS
PubMed
Google Scholar
Branco V, Canario J, Holmgren A, Carvalho C. Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicol Appl Pharmacol. 2011;251(2):95–103.
Article
CAS
PubMed
Google Scholar
Carvalho CML, Chew E-H, Hashemy SI, Lu J, Holmgren A. Inhibition of the human thioredoxin system - A molecular mechanism of mercury toxicity. J Biol Chem. 2008;283(18):11913–23.
Article
CAS
PubMed
Google Scholar
Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy ACD, Marques MR, Dafre AL, Farina M. Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med. 2009;47(4):449–57.
Article
CAS
PubMed
Google Scholar
Van Aggelen G, Ankley GT, Baldwin WS, Bearden DW, Benson WH, Chipman JK, Collette TW, Craft JA, Denslow ND, Embry MR, et al. Integrating Omic Technologies into Aquatic Ecological Risk Assessment and Environmental Monitoring: Hurdles, Achievements, and Future Outlook. Environ Health Perspect. 2010;118(1):1–5.
PubMed
Google Scholar
Martyniuk CJ, Alvarez S, Denslow ND. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology. Ecotoxicol Environ Saf. 2012;76:3–10.
Article
CAS
PubMed
Google Scholar
Kong HK, Wong MH, Chan HM, Lo SCL. Chronic Exposure of Adult Rats to Low Doses of Methylmercury Induced a State of Metabolic Deficit in the Somatosensory Cortex. J Proteome Res. 2013;12(11):5233–45.
Article
CAS
PubMed
Google Scholar
Shao YT, Yamamoto M, Figeys D, Ning ZB, Chan HM. Proteomic Analysis of Cerebellum in Common Marmoset Exposed to Methylmercury. Toxicol Sci. 2015;146(1):43–51.
Article
CAS
PubMed
Google Scholar
Berg K, Puntervoll P, Valdersnes S, Goksøyr A. Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquat Toxicol. 2010;100(1):51–65.
Article
CAS
PubMed
Google Scholar
Karlsen OA, Sheehan D, Goksøyr A. Alterations in the Atlantic COD (Gadus morhua) Hepatic Thiol-Proteome After Methylmercury Exposure. J Toxicol Environ Health Part A Curr Issues. 2014;77(9–11):650–62.
Article
CAS
Google Scholar
Nostbakken OJ, Martin SAM, Cash P, Torstensen BE, Amlund H, Olsvik PA. Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquat Toxicol. 2012;108:70–7.
Article
CAS
PubMed
Google Scholar
Richter CA, Garcia-Reyero N, Martyniuk C, Knoebl I, Pope M, Wright-Osment MK, Denslow ND, Tillitt DE. Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure tomethylmercury. Environ Toxicol Chem. 2011;30(2):301–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amlund H, Lundebye A-K, Berntssen MHG. Accumulation and elimination of methylmercury in Atlantic cod (Gadus morhua L.) following dietary exposure. Aquat Toxicol. 2007;83(4):323–30.
Article
CAS
PubMed
Google Scholar
Balk L, Hylland K, Hansson T, Berntssen MHG, Beyer J, Jonsson G, Melbye A, Grung M, Torstensen BE, Børseth JF, et al. Biomarkers in Natural Fish Populations Indicate Adverse Biological Effects of Offshore Oil Production. Plos One. 2011;6(5):e19735.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chesman BS, O'Hara S, Burt GR, Langston WT. Hepatic metallothionein and total oxyradical scavenging capacity in Atlantic cod Gadus morhua caged in open sea contamination gradients. Aquat Toxicol. 2007;84(3):310–20.
Article
CAS
PubMed
Google Scholar
Goksøyr A, Andersson T, Hansson T, Klungsøyr J, Zhang Y, Förlin L. Species characteristics of the hepatic xenobiotic and steroid biotransformation systems of two teleost fish, Atlantic cod (Gadus morhua) and rainbow trout (Salmo gairdneri). Toxicol Appl Pharmacol. 1987;89(3):347–60.
Article
PubMed
Google Scholar
Holth TF, Beylich BA, Skarphedinsdottir H, Liewenborg B, Grung M, Hylland K. Genotoxicity of Environmentally Relevant Concentrations of Water-Soluble Oil Components in Cod (Gadus morhua). Environ Sci Technol. 2009;43(9):3329–34.
Article
CAS
PubMed
Google Scholar
Olsvik PA, Lie KK, Goksøyr A, Midtun T, Frantzen S, Maage A. Are Atlantic Cod in Store Lungegrdsvann, a Seawater Recipient in Bergen, Affected by Environmental Contaminants? A qRT-PCR Survey. J Toxicol Environ Health Part A Curr Issues. 2009;72(3–4):140–54.
Article
CAS
Google Scholar
Tollefsen KE, Sundt RC, Beyer J, Meier S, Hylland K. Endocrine Modulation in Atlantic Cod (Gadus morhua L.) Exposed to Alkylphenols, Polyaromatic Hydrocarbons, Produced Water, and Dispersed Oil. J Toxicol Environ Health Part A Curr Issues. 2011;74(7–9):529–42.
Article
CAS
Google Scholar
Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrom M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011;477(7363):207–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadetie F, Karlsen OA, Eide M, Hogstrand C, Goksøyr A. Liver transcriptome analysis of Atlantic cod (Gadus morhua) exposed to PCB 153 indicates effects on cell cycle regulation and lipid metabolism. BMC Genomics. 2014;15:481.
Article
PubMed
PubMed Central
Google Scholar
Yadetie F, Karlsen OA, Lanzen A, Berg K, Olsvik P, Hogstrand C, Goksøyr A. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquat Toxicol. 2013;126:314–25.
Article
CAS
PubMed
Google Scholar
St Gelais AT, Costa-Pierce BA. Mercury concentrations in Northwest Atlantic winter-caught, male spiny dogfish (Squalus acanthias): A geographic mercury comparison and risk-reward framework for human consumption. Mar Pollut Bull. 2016;102(1):199–205.
Article
CAS
PubMed
Google Scholar
EU: Setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 2006, L 364/5
Go YM, Roede JR, Orr M, Liang YL, Jones DP. Integrated Redox Proteomics and Metabolomics of Mitochondria to Identify Mechanisms of Cd Toxicity. Toxicol Sci. 2014;139(1):59–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Xu ZF, Deng Y, Xu B, Yang HB, Wei YG, Feng S. Excitotoxicity and Oxidative Damages Induced by Methylmercury in Rat Cerebral Cortex and the Protective Effects of Tea Polyphenols. Environ Toxicol. 2014;29(3):269–83.
Article
CAS
PubMed
Google Scholar
Kaliman PA, Nikitchenko IV, Sokol OA, Strel'chenko EV. Regulation of heme oxygenase activity in rat liver during oxidative stress induced by cobalt chloride and mercury chloride. Biochem Moscow. 2001;66(1):77–82.
Article
CAS
Google Scholar
Panayiotidis MI, Stabler SP, Ahmad A, Pappa A, Legros LH, Hernandez-Saavedra D, Schneider BK, Allen RH, Vasiliou V, McCord JM, et al. Activation of a novel isoform of methionine adenosyl transferase 2A and increased S-adenosylmethionine turnover in lung epithelial cells exposed to hyperoxia. Free Radic Biol Med. 2006;40(2):348–58.
Article
CAS
PubMed
Google Scholar
Pajares MA, Alvarez L, Perez-Sala D. How are mammalian methionine adenosyltransferases regulated in the liver? A focus on redox stress. Febs Letters. 2013;587(12):1711–6.
Article
CAS
PubMed
Google Scholar
Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis. 2004;15(3):618–29.
Article
CAS
PubMed
Google Scholar
Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SSS, Lim CK, Brew BJ, Cullen KM, Guillemin GJ. Expression of Tryptophan 2,3-Dioxygenase and Production of Kynurenine Pathway Metabolites in Triple Transgenic Mice and Human Alzheimer's Disease Brain. Plos One. 2013;8(4):11.
Google Scholar
Wollmer MA. Cholesterol-related genes in Alzheimer's disease. Biochimica Biophys Acta Mol Cell Biol Lipids. 2010;1801(8):762–73.
Article
CAS
Google Scholar
Cui YJ, Huang MW, He YB, Zhang SY, Luo YZ. Genetic Ablation of Apolipoprotein A-IV Accelerates Alzheimer's Disease Pathogenesis in a Mouse Model. Am J Pathol. 2011;178(3):1298–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of Environmental Contaminants in the Etiology of Alzheimer's Disease: A Review. Curr Alzheimer Res. 2015;12(2):116–46.
Article
CAS
PubMed
Google Scholar
Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, Kim SY, Lee YM, Jeon MG, Kim CW, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin Isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem. 2005;280(31):28775–84.
Article
CAS
PubMed
Google Scholar
Larose C, Canuel R, Lucotte M, Di Giulio RT. Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp Biochem Physiol C Toxicol Pharmacol. 2008;147(2):139–49.
Article
PubMed
Google Scholar
Mieiro CL, Ahmad I, Pereira ME, Duarte AC, Pacheco M. Antioxidant system breakdown in brain of feral golden grey mullet (Liza aurata) as an effect of mercury exposure. Ecotoxicology. 2010;19(6):1034–45.
Article
CAS
PubMed
Google Scholar
Grune T, Reinheckel T, Davies KJA. Degradation of oxidized proteins in mammalian cells. Faseb Journal. 1997;11(7):526–34.
CAS
PubMed
Google Scholar
Thamsen M, Kumsta C, Li F, Jakob U. Is Overoxidation of Peroxiredoxin Physiologically Significant? Antioxid Redox Signal. 2011;14(4):725–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanda H, Shinkai Y, Kumagai Y. S-Mercuration of cellular proteins by methylmercury and its toxicological implications. J Toxicol Sci. 2014;39(5):687–700.
Article
CAS
PubMed
Google Scholar
Kanda H, Toyama T, Shinohara-Kanda A, Iwamatsu A, Shinkai Y, Kaji T, Kikushima M, Kumagai Y. S-Mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site. Arch Toxicol. 2012;86(11):1693–702.
Article
CAS
PubMed
Google Scholar
Martyniuk CJ, Fang B, Koomen JM, Gavin T, Zhang L, Barber DS, LoPachin RM. Molecular Mechanism of Glyceraldehyde-3-phosphate Dehydrogenase Inactivation by alpha, beta-Unsaturated Carbonyl Derivatives. Chem Res Toxicol. 2011;24(12):2302–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakajima H, Amano W, Kubo T, Fukuhara A, Ihara H, Azuma YT, Tajima H, Inui T, Sawa A, Takeuchi T. Glyceraldehyde-3-phosphate Dehydrogenase Aggregate Formation Participates in Oxidative Stress-induced Cell Death. J Biol Chem. 2009;284(49):34331–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol. 2004;14(1):20–8.
Article
CAS
PubMed
Google Scholar
Berntssen MHG, Aatland A, Handy RD. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol. 2003;65(1):55–72.
Article
CAS
PubMed
Google Scholar
Kushner JP, Barbuto AJ, Lee GR. An inherited enzymatic defect in porphyria cutanea tarda: decreased uroporphyrinogen decarboxylase activity. J Clin Investig. 1976;58(5):1089–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woods JS, Bowers MA, Davis HA. Urinary porphyrin profiles as biomarkers of trace metal exposure and toxicity: studies on urinary porphyrin excretion patterns in rats during prolonged exposure to methyl mercury. Toxicol Appl Pharmacol. 1991;110(3):464–76.
Article
CAS
PubMed
Google Scholar
Koss G, Schuler E, Arndt B, Seidel J, Seubert S, Seubert A. A comparative toxicological study on pike (Esox lucius L.) from the River Rhine and River Lahn. Aquat Toxicol. 1986;8(1):1–9.
Article
CAS
Google Scholar
Schlenk D, Handy R, Steinert S, Depledge MH, Benson W. Biomarkers. Boca Raton: Crc Press-Taylor & Francis Group; 2008.
Book
Google Scholar
Hahn ME, Chandran K. Uroporphyrin accumulation associated with cytochrome P4501A induction in fish hepatoma cells exposed to aryl hydrocarbon receptor agonists, including 2,3,7,8-tetrachlorodibenzo-p-dioxin and planar chlorobiphenyls. Arch Biochem Biophys. 1996;329(2):163–74.
Article
CAS
PubMed
Google Scholar
Eide M, Karlsen OA, Kryvi H, Olsvik PA, Goksøyr A. Precision-cut liver slices of Atlantic cod (Gadus morhua): An in vitro system for studying the effects of environmental contaminants. Aquat Toxicol. 2014;153:110–5.
Article
CAS
PubMed
Google Scholar
Anelli T, Sannino S, Sitia R. Proteostasis and "redoxtasis" in the secretory pathway: Tales of tails from ERp44 and immunoglobulins. Free Radic Biol Med. 2015;83:323–30.
Article
CAS
PubMed
Google Scholar
Ung CY, Lam SH, Hlaing MM, Winata CL, Korzh S, Mathavan S, Gong ZY. Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genomics. 2010;11:14.
Article
Google Scholar
Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J, Kang HM, Furlotte N, et al. Comparative Analysis of Proteome and Transcriptome Variation in Mouse. Plos Genetics. 2011;7(6):17.
Article
Google Scholar
Gust KA, Nanduri B, Rawat A, Wilbanks MS, Ang CY, Johnson DR, Pendarvis K, Chen XF, Quinn MJ, Johnson MS, et al. Systems toxicology identifies mechanistic impacts of 2-amino-4,6-dinitrotoluene (2A-DNT) exposure in Northern Bobwhite. BMC Genomics. 2015;16:17.
Article
Google Scholar
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.
CAS
PubMed
PubMed Central
Google Scholar
Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O'Rourke B, Paolocci N, Cortassa S. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study. J Gen Physiol. 2012;139(6):479–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, et al. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem. 2001;276(19):16168–76.
Article
CAS
PubMed
Google Scholar
Kil IS, Park JW. Regulation of mitochondrial NADP(+)-dependent isocitrate dehydrogenase activity by glutathionylation. J Biol Chem. 2005;280(11):10846–54.
Article
CAS
PubMed
Google Scholar
Mailloux RJ, Jin XL, Willmore WG. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2014;2:123–39.
Article
CAS
PubMed
Google Scholar
Wells TNC, Saxty BA. Redox control of catalysis in ATP-citrate lysate from rat liver. Eur J Biochem. 1992;204(1):249–55.
Article
CAS
PubMed
Google Scholar
Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol Chem. 2015;396(5):523–37.
Article
CAS
PubMed
Google Scholar
Hurd TR, Prime TA, Harbour ME, Lilley KS, Murphy MP. Detection of reactive oxygen species-sensitive thiol proteins by redox difference gel electrophoresis - Implications for mitochondrial redox signaling. J Biol Chem. 2007;282(30):22040–51.
Article
CAS
PubMed
Google Scholar
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199–218.
Article
CAS
PubMed
Google Scholar
Cambier S, Benard G, Mesmer-Dudons N, Gonzalez P, Rossignol R, Brethes D, Bourdineaud JP. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int J Biochem Cell Biol. 2009;41(4):791–9.
Article
CAS
PubMed
Google Scholar
Berle M, Kroksveen AC, Garberg H, Aarhus M, Haaland OA, Wester K, Ulvik RJ, Helland C, Berven F. Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients. Fluids Barriers CNS. 2013;10(1):17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L. SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics. 2011;11(5):996–9.
Article
CAS
PubMed
Google Scholar
Vaudel M, Burkhart JM, Zahedi RP, Oveland E, Berven FS, Sickmann A, Martens L, Barsnes H. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol. 2015;33(1):22–4.
Article
CAS
PubMed
Google Scholar
Dysvik B, Jonassen I. J-Express: exploring gene expression data using Java. Bioinformatics. 2001;17(4):369–70.
Article
CAS
PubMed
Google Scholar
Mann M, Kelleher NL. Precision proteomics: The case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A. 2008;105(47):18132–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130–9.
CAS
PubMed
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.
Article
PubMed
Google Scholar
Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(D1):D447–56.
Article
PubMed
Google Scholar