Lewis C, Long TAF. Courtship and reproduction in Carybdea sivickisi (Cnidaria: Cubozoa). Mar. Biol. [Internet]. 2005 [cited 2014 Feb 27];147:477–83. Available from: http://link.springer.com/10.1007/s00227-005-1602-0
Lewis C, Bentlage B, Yanagihara AA, Gillan W, Blerk JVAN, Keil DP, et al. Redescription of Alatina alata (Reynaud, 1830) (Cnidaria: Cubozoa) from Bonaire, Dutch Caribbean. Zootaxa. 2013;3737:473–87.
Article
PubMed
PubMed Central
Google Scholar
Garm A, Lebouvier M, Tolunay D. Mating in the box jellyfish Copula sivickisi-Novel function of cnidocytes. J. Morphol. [Internet]. 2015 [cited 2015 Jun 4];00. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26010863
Lewis C, Bentlage B. Clarifying the identity of the Japanese Habu-kurage, Chironex yamaguchii, sp. nov. (Cnidaria: Cubozoa: Chirodropida). Zootaxa. 2009;65:59–65.
Google Scholar
Brinkman DL, Jia X, Potriquet J, Kumar D, Dash D, Kvaskoff D, et al. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics [Internet]. 2015 [cited 2015 Jun 5];16:407. Available from: http://www.biomedcentral.com/1471-2164/16/407
Gershwin L, Richardson AJ, Winkel KD, Fenner PJ, Lippmann J, Hore R, et al. Biology and ecology of Irukandji jellyfish (cnidaria: cubozoa). [Internet]. Adv. Mar. Biol. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24182899
Bentlage B, Lewis C. An illustrated key and synopsis of the families and genera of carybdeid box jellyfishes (Cnidaria: Cubozoa: Carybdeida), with emphasis on the “Irukandji family” (Carukiidae). J. Nat. Hist. [Internet]. 2012;46:2595–620. Available from: http://www.tandfonline.com/doi/abs/10.1080/00222933.2012.717645
Nilsson D-E, Gislén L, Coates MM, Skogh C, Garm A. Advanced optics in a jellyfish eye. Nature. 2005;435:201–5.
Article
CAS
PubMed
Google Scholar
Garm A, Coates MM, Gad R, Seymour J, Nilsson D-E. The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol. [Internet]. 2007 [cited 2014 Apr 18];193:547–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17541674
Garm A, O’Connor M, Parkefelt L, Nilsson D-E. Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J. Exp. Biol. [Internet]. 2007 [cited 2014 Apr 18];210:3616–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17921163
O’Connor M, Garm A, Marshall JN, Hart NS, Ekström P, Skogh C, et al. Visual pigment in the lens eyes of the box jellyfish Chiropsella bronzie. Proc. Biol. Sci. [Internet]. 2010 [cited 2014 Apr 9];277:1843–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2871879&tool=pmcentrez&rendertype=abstract
Mariscal RN. Nematocysts. In: Muscatine L, Lenoff H, editors. Coelenterate Biol. Rev. new Perspect. [Internet]. New York: Academic Press; 1974 [cited 2015 Jun 5]. p. 129–78. Available from: https://www.mendeley.com/catalog/coelenterate-biology-reviews-new-perspectives/
Larson RJ. Cubomedusae: Feeding functional morphology, behavior and phylogenetic position. In: Mackie GO, editor. Coelenterate Ecol. Behav. [Internet]. Boston, MA: Springer US; 1976. p. 237–45. Available from: http://dx.doi.org/10.1007/978-1-4757-9724-4_25
Östman C. A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Sci Mar. 2000;64:31–46.
Article
Google Scholar
Gershwin L-A. Nematocysts of the Cubozoa. Zootaxa. 2006;57:1–57.
David CN, Challoner D. Distribution of Interstitial Cells and Differentiating Nematocytes in Nests in Hydra attenuata. Am. Zool. [Internet]. 1974;14:537–42. Available from: http://az.oxfordjournals.org/lookup/doi/10.1093/icb/14.2.537
Houliston E, Momose T, Manuel M. Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet. [Internet]. 2010 [cited 2011 Jul 17];26:159–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20227783
Jouiaei M, Casewell NR, Yanagihara AA, Nouwens A, Cribb BW, Whitehead D, et al. Firing the sting: chemically induced discharge of cnidae reveals novel proteins and peptides from box jellyfish (Chironex fleckeri) venom. Toxins (Basel). [Internet]. 2015 [cited 2015 Jun 5];7:936–50. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4379534&tool=pmcentrez&rendertype=abstract
Ponce D, Brinkman DL, Potriquet J, Mulvenna J. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins (Basel). [Internet]. 2016;8:102. Available from: http://www.mdpi.com/2072-6651/8/4/102
Weston AJ, Chung R, Dunlap WC, Morandini AC, Marques AC, Moura-da-Silva AM, et al. Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis. Toxicon [Internet]. Elsevier Ltd; 2013 [cited 2015 May 30];71:11–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23688393
Li R, Yu H, Xue W, Yue Y, Liu S, Xing R, et al. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J. Proteomics [Internet]. Elsevier B.V.; 2014;106:17–29. Available from: http://dx.doi.org/10.1016/j.jprot.2014.04.011
Conant FS. The Cubomedusae. By Franklin Story Conant. A memorial volume. Memoirs from the biological laboratory of the Johns Hopkins University, IV, 1 [Internet]. Baltimore: The Johns Hopkins Press; 1898. Available from: http://www.biodiversitylibrary.org/item/16812#page/9/mode/1up
Land MF, Nilsson D-E. Animal eyes (Oxford Animal Biology Series). USA: Oxford University Press; 2002.
Google Scholar
Nordström K, Wallén, Seymour J, Nilsson D. A simple visual system without neurons in jellyfish larvae. Proc. R. Soc. London B Biol. Sci. [Internet]. 2003;270:2349–54. Available from: http://rspb.royalsocietypublishing.org/content/270/1531/2349.abstract
Arendt D, Hausen H, Purschke G. The “division of labour” model of eye evolution. Philos. Trans. R. Soc. Lond. B. Biol. Sci. [Internet]. 2009 [cited 2014 Feb 25];364:2809–17. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2781865&tool=pmcentrez&rendertype=abstract
Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A. Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2008;105:15576–80. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2563118&tool=pmcentrez&rendertype=abstract
Bielecki J, Zaharoff AK, Leung NY, Garm A, Oakley TH. Ocular and extraocular expression of opsins in the rhopalium of Tripedalia cystophora (Cnidaria: Cubozoa). PLoS One [Internet]. 2014 [cited 2015 Jan 29];9:e98870. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4047050&tool=pmcentrez&rendertype=abstract
Liegertová M, Pergner J, Kozmiková I, Fabian P, Pombinho AR, Strnad H, et al. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution. Sci. Rep. [Internet]. Nature Publishing Group; 2015;5:11885. Available from: http://www.nature.com/doifinder/10.1038/srep11885
Suga H, Schmid V, Gehring WJ. Evolution and functional diversity of jellyfish opsins. Curr Biol. 2008;18:51–5.
Article
CAS
PubMed
Google Scholar
Feuda R, Hamilton SC, Mcinerney JO, Pisani D. Metazoan opsin evolution reveals a simple route to animal vision. 2012;109:18868–72.
Schnitzler CE, Pang K, Powers ML, Reitzel AM, Ryan JF, Simmons D, et al. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol. [Internet]. BioMed Central Ltd; 2012;10:107. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3570280&tool=pmcentrez&rendertype=abstract
Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, et al. Shedding new light on opsin evolution. Proc. Biol. Sci. [Internet]. 2012 [cited 2015 Jan 1];279:3–14. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3223661&tool=pmcentrez&rendertype=abstract
Speiser DI, Pankey M, Zaharoff AK, Battelle B a, Bracken-Grissom HD, Breinholt JW, et al. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Bioinformatics [Internet]. 2014;15:350. Available from: http://www.biomedcentral.com/1471-2105/15/350
Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature [Internet]. Nature Publishing Group; 2011 [cited 2011 Jul 25];476:320–3. Available from: http://www.nature.com/doifinder/10.1038/nature10249
Mason B, Schmale M, Gibbs P, Miller MW, Wang Q, Levay K, et al. Evidence for multiple phototransduction pathways in a reef-building coral. PLoS One. 2012;7:1–9.
Google Scholar
Marques AC, García J, Lewis Ames C. Internal fertilization and sperm storage in cnidarians: a response to Orr and Brennan. Trends Ecol. Evol. [Internet]. 2015;1–2. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0169534715001408
Garm A, Lebouvier M, Tolunay D. Mating in the box jellyfish Copula sivickisi -Novel function of cnidocytes. J. Morphol. [Internet]. 2015;00:n/a – n/a. Available from: http://doi.wiley.com/10.1002/jmor.20395
Gershwin L-A. Carybdea alata auct. and Manokia stiasnyi, reclassification to a new family with description of a new genus and two new species. Mem Queensl Mus. 2005;51:501–23.
Google Scholar
Yanagihara AA, Kuroiwa JMY, Oliver LM, Chung JJ, Kunkel DD. Ultrastructure of a novel eurytele nematocyst of Carybdea alata Reynaud (Cubozoa, Cnidaria). Cell Tissue Res. [Internet]. 2002 [cited 2014 Apr 18];308:307–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12037587
Arneson AC, Cutress CE. Life History of Carybdea alata Reynaud, 1830 (Cubomedusae). Mackie GO, editor. Coelenterate Ecol. Behav. New York: Plenum Publishing Corporation; 1976.
Lawley JW, Lewis Ames C, Bentlage B, Yanagihara AA, Goodwill R, Kayal E, et al. In press. The box jellyfish Alatina alata has a circumtropical distribution. Biol. Bull.
Morandini AC. Deep-Sea medusae (Cnidaria : Cubozoa, Hydrozoa and Scyphozoa) from the coast of Bahia (western South Atlantic, Brazil). Mitteilungen aus dem Museum für Naturkd. Berlin. Zool. Museum und Inst. für Spez. Zool. 2003;100:13–25.
Chiaverano LM, Holland BS, Crow GL, Blair L, Yanagihara AA. Long-term fluctuations in circalunar Beach aggregations of the box jellyfish Alatina moseri in Hawaii, with links to environmental variability. PLoS One [Internet]. 2013 [cited 2014 Feb 19];8:e77039. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3806728&tool=pmcentrez&rendertype=abstract
Crow GL. Box Jellyfish (Cubozoa : Carybdeida) in Hawaiian Waters, and the First Record of Tripedalia cystophora in Hawai ‘i. 2015;108:93–108.
Carrette T, Straehler-Pohl I, Seymour J. Early Life History of Alatina cf. moseri Populations from Australia and Hawaii with Implications for Taxonomy (Cubozoa: Carybdeida, Alatinidae). PLoS One [Internet]. 2014 [cited 2014 Jan 28];9:e84377. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3893091&tool=pmcentrez&rendertype=abstract
Brekhman V, Malik A, Haas B, Sher N, Lotan T. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics [Internet]. 2015;16. Available from: http://www.biomedcentral.com/1471-2164/16/74
Sanders SM, Shcheglovitova M, Cartwright P. Differential gene expression between functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus (Phylum Cnidaria). BMC Genomics [Internet]. 2014;15:406. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4072882&tool=pmcentrez&rendertype=abstract
Macrander J, Brugler MR, Daly M. A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps. BMC Genomics [Internet]. 2015 [cited 2015 Jun 4];16:221. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4397815&tool=pmcentrez&rendertype=abstract
Zapata F, Goetz FE, Smith S A., Howison M, Siebert S, Church SH, et al. Phylogenomic Analyses Support Traditional Relationships within Cnidaria. PLoS One [Internet]. 2015;10:e0139068. Available from: http://dx.plos.org/10.1371/journal.pone.0139068
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. [Internet]. 2013;8:1494–512. Available from: http://www.nature.com/doifinder/10.1038/nprot.2013.084
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. [Internet]. 2011;29:644–52. Available from: https://trinotate.github.io
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.
Article
PubMed
PubMed Central
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7.
Article
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics [Internet]. 2011 [cited 2014 Jul 10];12:323. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3163565&tool=pmcentrez&rendertype=abstract
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Chen Y, Mccarthy D, Ritchie M, Robinson M, Smyth GK. edgeR : differential expression analysis of digital gene expression data User’ s Guide. 2016.
Google Scholar
Casewell NR, Wüster W, Vonk FJ, Harrison R a, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol. Evol. [Internet]. 2012 [cited 2015 Jun 4];28:219–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23219381
Jouiaei M, Yanagihara AA, Madio B, Nevalainen T, Alewood P, Fry B. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel). [Internet]. 2015;7:2251–71. Available from: http://www.mdpi.com/2072-6651/7/6/2251/
Aungsuchawan S, Browdy CL, Withyachumnarnkul B. Sperm capacitation of the shrimp Litopenaeus vannamei. Aquac Res. 2011;42:188–95.
Article
Google Scholar
Kurz EM, Holstein TW, Petri BM, Engel J, David CN. Mini-collagens in Hydra nematocytes. J Cell Biol. 1991;115:1159–69.
Article
CAS
PubMed
Google Scholar
Balasubramanian PG, Beckmann A, Warnken U, Schnölzer M, Schüler A, Bornberg-Bauer E, et al. Proteome of Hydra nematocyst. J Biol Chem. 2012;287:9672–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
David CN, Ozbek S, Adamczyk P, Meier S, Pauly B, Chapman J, et al. Evolution of complex structures: minicollagens shape the cnidarian nematocyst. Trends Genet. [Internet]. 2008 [cited 2015 Jan 29];24:431–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18676050
Kozmik Z, Swamynathan SK, Ruzickova J, Jonasova K, Paces V, Vlcek C, et al. Cubozoan crystallins: Evidence for convergent evolution of pax regulatory sequences. Evol Dev. 2008;10:52–61.
Article
CAS
PubMed
Google Scholar
Brinkman DL, Burnell JN. Biochemical and molecular characterisation of cubozoan protein toxins. Toxicon [Internet]. Elsevier Ltd; 2009;54:1162–73. Available from: http://dx.doi.org/10.1016/j.toxicon.2009.02.006
Nagai H. Recent Progress in Jellyfish Toxin Study. J. Heal. Sci. [Internet]. 2003;49:337–40. Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/jhs/49.337?from=CrossRef
Nagai H, Takuwa K, Nakao M, Ito E, Miyake M, Noda M, et al. Novel Proteinaceous Toxins from the Box Jellyfish (Sea Wasp) Carybdea rastoni. Biochem. Biophys. Res. Commun. [Internet]. 2000;275:582–8. Available from: http://www.sciencedirect.com/science/article/pii/S0006291X00933539
Nagai H, Takuwa K, Nakao M, Sakamoto B, Crow GL, Nakajima T. Isolation and Characterization of a Novel Protein Toxin from the Hawaiian Box Jellyfish (Sea Wasp) Carybdea alata. Biochem. Biophys. Res. Commun. [Internet]. 2000;275:589–94. Available from: http://www.sciencedirect.com/science/article/pii/S0006291X00933527
Gacesa R, Chung R, Dunn SR, Weston AJ, Jaimes-Becerra A, Marques AC, et al. Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia). BMC Genomics [Internet]. BMC Genomics; 2015;16:774. Available from: http://www.biomedcentral.com/1471-2164/16/774
Shpirer E, Chang E, Diamant A, Rubinstein N, Cartwright P, Huchon D. Diversity and evolution of myxozoan minicollagens and nematogalectins. BMC Evol. Biol. [Internet]. 2014;14:205. Available from: http://www.biomedcentral.com/1471-2148/14/205
Horibata Y, Higashi H, Ito M. Transglycosylation and Reverse Hydrolysis Reactions of Endoglycoceramidase from the Jellyfish. J. Biochem. [Internet]. 2001;130:263–8. Available from: http://jb.oxfordjournals.org/content/130/2/263.full.pdf
Engel U, Ozbek S, Streitwolf-Engel R, Petri B, Lottspeich F, Holstein TW. Nowa, a novel protein with minicollagen Cys-rich domains, is involved in nematocyst formation in Hydra. J Cell Sci. 2002;115:3923–34.
Article
CAS
PubMed
Google Scholar
Milde S, Hemmrich G, Anton-Erxleben F, Khalturin K, Wittlieb J, Bosch TCG. Characterization of taxonomically restricted genes in a phylum-restricted cell type. Genome Biol. 2009;10:R8.
Article
PubMed
PubMed Central
Google Scholar
Forêt S, Knack B, Houliston E, Momose T, Manuel M, Quéinnec E, et al. New tricks with old genes: The genetic bases of novel cnidarian traits. Trends Genet. 2010;26:154–8.
Article
PubMed
Google Scholar
Eckert T. In silico study on sulfated and non-sulfated carbohydrate chains from proteoglycans in Cnidaria and interaction with collagen. Open J Phys Chem. 2012;02:123–33.
Article
CAS
Google Scholar
Wyss A. Functions and Actions of Retinoids and Carotenoids : Building on the Vision of James Allen Olson Carotene Oxygenases : A New Family of Double Bond Cleavage Enzymes. Am. Soc. Nutr. Sci. 2004;246–50.
Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM, Sancar A, et al. Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. J. Exp. Biol. [Internet]. 2012;215:1278–86. Available from: http://jeb.biologists.org/cgi/doi/10.1242/jeb.067140
Reitzel AM, Tarrant AM, Levy O. Circadian clocks in the cnidaria: Environmental entrainment, molecular regulation, and organismal outputs. Integr Comp Biol. 2013;53:118–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liedvogel M, Mouritsen H. Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface. 2010;7 Suppl 2:S147–62.
Article
CAS
PubMed
Google Scholar
Rivera AS, Winters I, Rued A, Ding S, Posfai D, Cieniewicz B, et al. The evolution and function of the Pax/Six regulatory network in sponges. Evol Dev. 2013;15:186–96.
Article
CAS
PubMed
Google Scholar
Piatigorsky J, Brient WEO, Norman BL, Kalumuckt K, Wistow GJ, Borras T, et al. Gene sharing by δ-crystallin and argininosuccinate lyase. Amino Acids. 1988;85:3479–83.
CAS
Google Scholar
Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, et al. Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2008;105:8989–93. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2449352&tool=pmcentrez&rendertype=abstract
Piatigorsky J, Horwitz J, Kuwabara T, Cutress CE. The cellular eye lens and crystallins of cubomedusan jellyfish. J Comp Physiol A. 1989;164:577–87.
Article
CAS
PubMed
Google Scholar
Piatigorsky J, Horwitzs J, Norman BL. J1-crystallins of the Cubomedusan jellyfish lens constitute a novel family encoded in at least three intronless genes. J Biol Chem. 1993;2643:11894–901.
Google Scholar
Kumar JP. The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci. 2009;66:565–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furukawa T, Kozak CA, Cepko CL. rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. [Internet]. 1997;94:3088–93. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.94.7.3088
Hayward A, Takahashi T, Bendena WG, Tobe SS, Hui JHL. Comparative genomic and phylogenetic analysis of vitellogenin and other large lipid transfer proteins in metazoans. FEBS Lett. [Internet]. Federation of European Biochemical Societies; 2010;584:1273–8. Available from: http://dx.doi.org/10.1016/j.febslet.2010.02.056
Levitan S, Sher N, Brekhman V, Ziv T, Lubzens E, Lotan T. The making of an embryo in a basal metazoan: Proteomic analysis in the sea anemone Nematostella vectensis. Proteomics [Internet]. 2015;15:4096–104. Available from: http://doi.wiley.com/10.1002/pmic.201500255
Shikina S, Chen CJ, Chung YJ, Shao ZF, Liou JY, Tseng HP, et al. Yolk formation in a stony coral Euphyllia ancora (Cnidaria, Anthozoa): Insight into the evolution of vitellogenesis in nonbilaterian animals. Endocrinology. 2013;154:3447–59.
Article
CAS
PubMed
Google Scholar
Iyengar MR, Iyengar CW, Chen HY, Brinster RL, Bornslaeger E, Schultz RM. Expression of creatine kinase isoenzyme during oogenesis and embryogenesis in the mouse. Dev Biol. 1983;96:263–8.
Article
CAS
PubMed
Google Scholar
Pineda AO, Ellington WR. Structural and functional implications of the amino acid sequences of dimeric, cytoplasmic and octameric mitochondrial creatine kinases from a protostome invertebrate. Eur J Biochem. 1999;264:67–73.
Article
CAS
PubMed
Google Scholar
Wallimann T, Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem. 1994;133-134:193–220.
Article
CAS
PubMed
Google Scholar
Rahman MS, Kwon W-S, Pang M-G. Calcium Influx and Male Fertility in the Context of the Sperm Proteome: An Update. Biomed Res. Int. [Internet]. 2014;2014:1–13. Available from: http://www.hindawi.com/journals/bmri/2014/841615/
Adonin LS, Shaposhnikova TG, Podgornaya O. Aurelia aurita (Cnidaria) Oocytes’ contact plate structure and development. PLoS One. 2012;7:1–10.
Article
Google Scholar
Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church S, et al. Phylogenomic analyses support traditional relationships within Cnidaria. bioRxiv beta. 2015;4–6.
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD a, King GF, et al. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. [Internet]. 2009 [cited 2015 Mar 31];10:483–511. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19640225
Galliot B. Hydra, a fruitful model system for 270 years. Int J Dev Biol. 2012;56:411–23.
Article
CAS
PubMed
Google Scholar
Moran Y, Genikhovich G, Gordon D, Wienkoop S, Zenkert C, Ozbek S, et al. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones. Proc R Soc B Biol Sci. 2012;279:1351–8.
Article
CAS
Google Scholar
Moran Y, Praher D, Schlesinger A, Ayalon A, Tal Y, Technau U. Analysis of soluble protein contents from the nematocysts of a model sea anemone sheds light on venom evolution. Mar Biotechnol. 2013;15:329–39.
Article
CAS
PubMed
Google Scholar
Junqueira-de-Azevedo ILM, Bastos CMV, Ho PL, Luna MS, Yamanouye N, Casewell NR. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom. Mol. Biol. Evol. [Internet]. 2015;32:754–66. Available from: http://mbe.oxfordjournals.org/content/32/3/754.abstract
Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett. [Internet]. Federation of European Biochemical Societies; 2009;583:1736–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19303875
Zhang M, Fishman Y, Sher D, Zlotkin E. Hydralysin, a novel animal group-selective paralytic and cytolytic protein from a noncnidocystic origin in Hydra. Biochemistry [Internet]. 2003;42:8939–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12885226
Trevisan-Silva D, Gremski LH, Chaim OM, da Silveira RB, Meissner GO, Mangili OC, et al. Astacin-like metalloproteases are a gene family of toxins present in the venom of different species of the brown spider (genus Loxosceles). Biochimie. 2010;92:21–32.
Article
CAS
PubMed
Google Scholar
Möhrlen F, Maniura M, Plickert G, Frohme M, Frank U. Evolution of astacin-like metalloproteases in animals and their function in development. Evol Dev. 2006;8:223–31.
Article
PubMed
Google Scholar
Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44:227–31.
Article
CAS
PubMed
Google Scholar
Avila Soria G. Molecular characterization of Carukia barnesi and Malo kingi, cnidaria; Cubozoa; Carybdeidae. PhD Thesis [Internet]. James Cook University; 2009. Available from: http://eprints.jcu.edu.au/8218
Ponce D, Brinkman DL, Luna-Ramirez K, Wright CE, Dorantes-Aranda JJ. Comparative study of the toxic effects of Chrysaora quinquecirrha (Cnidaria: Scyphozoa) and Chironex fleckeri (Cnidaria: Cubozoa) venoms using cell-based assays. Toxicon. 2015;106:57–67.
Article
CAS
PubMed
Google Scholar
Shichida Y, Matsuyama T. Evolution of opsins and phototransduction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. [Internet]. 2009 [cited 2015 Jan 19];364:2881–95. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2781858&tool=pmcentrez&rendertype=abstract
Terakita A. Protein family review The opsins. Genome Biol. [Internet]. 2005;6:1–9. Available from: http://genomebiology.com/2005/6/3/213
Plachetzki DC, Degnan BM, Oakley TH. The origins of novel protein interactions during animal opsin evolution. PLoS One [Internet]. 2007 [cited 2015 Jan 25];2:e1054. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2013938&tool=pmcentrez&rendertype=abstract
Plachetzki DC, Fong CR, Oakley TH. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc. Biol. Sci. [Internet]. 2010 [cited 2011 Jun 12];277:1963–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2880087&tool=pmcentrez&rendertype=abstract
Feuda R, Rota-Stabelli O, Oakley TH, Pisani D. The comb jelly opsins and the origins of animal phototransduction. Genome Biol. Evol. [Internet]. 2014 [cited 2015 Jan 29];6:1964–71. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4159004&tool=pmcentrez&rendertype=abstract
Levy O, Appelbaum L, Leggat W, Gothlif Y, Hayward DC, Miller DJ, et al. Light-Responsive Cryptochromes from a Simple Multicellular Animal, the Coral Acropora millepora. Science (80-.). [Internet]. 2007;318:467–70. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1145432
Plachetzki DC, Fong CR, Oakley TH. Cnidocyte discharge is regulated by light and opsin-mediated phototransduction. BMC Biol. [Internet]. BioMed Central Ltd; 2012;10:17. Available from: http://www.biomedcentral.com/1741-7007/10/17
Desmond Ramirez M, Speiser DI, Sabrina Pankey M, Oakley TH. Understanding the dermal light sense in the context of integrative photoreceptor cell biology. Vis Neurosci. 2011;28:265–79.
Article
PubMed
Google Scholar
Piatigorsky J, Norman B, Dishaw LJ, Kos L, Horwitz J, Steinbach PJ, et al. J3-crystallin of the jellyfish lens: similarity to saposins. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2001;98:12362–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=60059&tool=pmcentrez&rendertype=abstract
Hayakawa H, Andoh T, Watanabe T. Identification of a novel yolk protein in the hermatypic coral Galaxea fascicularis. Zoolog. Sci. [Internet]. 2007;24:249–55. Available from: http://www.bioone.org/doi/abs/10.2108/zsj.24.249
Danneels E, Van Vaerenbergh M, Debyser G, Devreese B, de Graaf D. Honeybee Venom Proteome Profile of Queens and Winter Bees as Determined by a Mass Spectrometric Approach. Toxins (Basel). [Internet]. 2015;7:4468–83. Available from: http://www.mdpi.com/2072-6651/7/11/4468/
Straehler-Pohl I, Garm A, Morandini AC. Sexual dimorphism in Tripedaliidae (Conant 1897) (Cnidaria, Cubozoa, Carybdeida). 2014;3785:533–49.
Mayer AG. Medusae of the Hawaiian Islands Collected by the Steamer albatross in 1902. Bull US Fish Comm. 1906;23:1131–43.
Google Scholar
Miller RL. Cnidaria. In: Adiyodi KG, Adiyodi RG, editors. Reprod. Biol. Invertebr. Vol. II Spermatogenes. Sperm Funct. John Wiley & Sons Ltd.; 1983. p. pp. 23–73.
Krueger F. Trim Galore!. [Internet]. 2012. Available from: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal [Internet]. 2011;17.1:10–2. Available from: http://journal.embnet.org/index.php/embnetjournal/article/view/200
Andrews S. FastQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2014.
Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2011 [cited 2014 Jul 13];108:1513–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3029755&tool=pmcentrez&rendertype=abstract
Macmanes MD, Eisen MB. Improving transcriptome assembly through error correction of high-throughput sequence reads. PeerJ [Internet]. 2013 [cited 2015 Jan 6];1:e113. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3728768&tool=pmcentrez&rendertype=abstract
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. [Internet]. 2010;11:R25. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2864565&tool=pmcentrez&rendertype=abstract
Oliveros JC. Venny. An interactive tool for comparing lists with Venn’s diagrams. [Internet]. 2007 [cited 2016 Mar 20]. Available from: http://bioinfogp.cnb.csic.es/tools/venny/index.html
Shimodaira H, Hasegawa M. Letter to the Editor Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Mol. Biol. Evol. [Internet]. 1999;16:1114–6. Available from: http://mbe.oxfordjournals.org/content/16/8/1114.full.pdf+html