Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2002;34(5):475–91.
Article
Google Scholar
Schwaiger T, Beauchemin KA, Penner GB. The duration of time that beef cattle are fed a high-grain diet affects the recovery from a bout of ruminal acidosis: dry matter intake and ruminal fermentation. J Anim Sci. 2013;91(12):5729–42.
Article
CAS
PubMed
Google Scholar
Wierenga K, McAllister TA, Gibb DJ, Chaves AV, Okine EK, Beauchemin KA, Oba M. Evaluation of triticale dried distillers grains with solubles as a substitute for barley grain and barley silage in feedlot finishing diets. J Anim Sci. 2010;88(9):3018–29.
Article
CAS
PubMed
Google Scholar
Vergara CF, Döpfer D, Cook NB, Nordlund KV, McArt JAA, Nydam DV, Oetzel GR. Risk factors for postpartum problems in dairy cows: explanatory and predictive modeling. J Dairy Sci. 2014;97(7):4127–40.
Article
CAS
PubMed
Google Scholar
Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Sera microRNAs are promising novel biomarkers. PLoS One. 2007;3(9):e3148.
Article
Google Scholar
Wang K, Zhang S, Marzolf B. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009;106(11):4402–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin X, Xu H, Gong W, Deng W. The Tumor Cytosol miRNAs, Fluid miRNAs, and Exosomes miRNAs in Lung Cancer. Front Oncol. 2013;4:357.
Google Scholar
Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.
Article
CAS
PubMed
Google Scholar
Qin X, Yan L, Zhao X, Li C, Fu Y. microRNA-21 overexpression contributes to cell proliferation by targeting PTEN in endometrioid endometrial cancer. Oncol Lett. 2012;4(6):1290–6.
CAS
PubMed
PubMed Central
Google Scholar
Kim YJ, Hwang SH, Cho HH, Shin KK. MicroRNA 21 regulates the proliferation of human adipose tissue derived mesenchymal stem cells and high‐fat diet‐induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol. 2012;227(1):183–93.
Article
CAS
PubMed
Google Scholar
Zhang Z, Sun J, Bai Z, Li H, He S, Chen R. MicroRNA-153 acts as a prognostic marker in gastric cancer and its role in cell migration and invasion. Onco Targets Ther. 2015;8:357–64.
CAS
PubMed
PubMed Central
Google Scholar
Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, et al. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA. 2013;19(5):712–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu F, Guo NJ, Tian H, Marohn M, Gearhart S, Bayless TM, et al. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2011;17(1):241–50.
Article
PubMed
Google Scholar
Hoekstra M, van der Lans CAC, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun. 2010;394(3):792–7.
Article
CAS
PubMed
Google Scholar
Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hanmedani F, Kayvanpour E, et al. MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol. 2011;106(1):13–23.
Article
CAS
PubMed
Google Scholar
Leidinger P, Backes C, Meder B, Meese E, Keller A. The human miRNA repertoire of different blood compounds. BMC Genomics. 2014;15:474.
Article
PubMed
PubMed Central
Google Scholar
Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3:23743.
Article
Google Scholar
Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int Legal Med. 2010;124(3):217–26.
Article
Google Scholar
Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tzimagiorgis G, Michailidou EZ, Kritis A, Markopoulos AK, Kouidou S. Recovering circulating extracellular or cell-free RNA from bodily fluids. Cancer Epidemiol. 2011;35(6):580–9.
Article
CAS
PubMed
Google Scholar
Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in sera: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.
Article
CAS
PubMed
Google Scholar
Ioannidis J, Donadeu FX. Circulating miRNA signatures of early pregnancy in cattle. BMC Genomics. 2016;17:184.
Article
PubMed
PubMed Central
Google Scholar
Zheng Y, Chen KL, Zheng XM, Li HX, Wang GL. Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows. Cell Stress Chaperones. 2014;19(6):973–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han W, Zhu Y, Su Y, Li G, Qu L, Zhang H, et al. High-throughput sequencing reveals circulating miRNAs as potential biomarkers for measuring puberty onset in chicken (Gallus gallus). PLoS One. 2016;11(5):e0154958.
Article
PubMed
PubMed Central
Google Scholar
Andersson P, Gidlöf O, Braun OO, Götberg M, van der Pals J, Olde B, et al. Plasma levels of liver-specific miR-122 is massively increased in a porcine cardiogenic shock model and attenuated by hypothermia. Shock. 2012;37(2):234–8.
Article
CAS
PubMed
Google Scholar
Ashby J, Flack K, Jimenez LA, Duan Y, Khatib A-KK, Somlo G, et al. Distribution profiling of circulating microRNAs in sera. Anal Chem. 2014;86(18):9343–9.
Article
CAS
PubMed
Google Scholar
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183(3):1161–72.
Article
CAS
PubMed
Google Scholar
Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C, Geuze HJ. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol. 2000;165(3):1259–65.
Article
CAS
PubMed
Google Scholar
Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2011;3:56.
Google Scholar
Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.
Article
CAS
PubMed
Google Scholar
Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Gene. 2012;13(5):358–69.
Article
CAS
Google Scholar
Dhahbi JM, Spindler SR, Atamna H, Boffelli D, Mote P, Martin DI. 5’-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human sera and plasma. Physiol Genomics. 2013;45(21):990–8.
Article
CAS
PubMed
Google Scholar
Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Boffelli D, Mote P, et al. 5’ tRNA halves are present as abundant complexes in sera, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics. 2012;14:298.
Article
Google Scholar
Okamura K. Diversity of animal small RNA pathways and their biological utility. Wiley Interdiscip Rev RNA. 2012;3(3):351–68.
Article
CAS
PubMed
Google Scholar
Zhang C. Novel functions for small RNA molecules. Curr Opin Mol Ther. 2009;11(6):641–51.
CAS
PubMed
PubMed Central
Google Scholar
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.
Article
CAS
PubMed
Google Scholar
Kramer BS. The science of early detection. Urol Oncol. 2004;22(4):344–7.
Article
PubMed
Google Scholar
Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11(8):809–15.
Article
CAS
Google Scholar
Rasmussen KD, Simmini S, Abreu-Goodger C, Bartonicek N, Di Giacomo M, Bilbao-Cortes D, et al. The miR-144/451 locus is required for erythroid homeostasis. J Experi Med. 2010;207(7):1351–8.
Article
CAS
Google Scholar
Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, et al. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Pre Res (Phila). 2012;5(3):492–7.
Article
CAS
Google Scholar
Spornraft M, Kirchner B, Pfaffl MW, Riedmaier I. Comparison of the miRNAome and piRNome of bovine blood and plasma by small RNA sequencing. Biotechnol Lett. 2015;37(6):1165–76.
Article
CAS
PubMed
Google Scholar
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siomi H, Siomi MC. Posttranscriptional regulation of MicroRNA biogenesis in animals. Mol Cell. 2010;38:323–32.
Article
CAS
PubMed
Google Scholar
Mahajan VS, Drake A, Chen J. Virus-specific host miRNAs: antiviral defenses or promoters of persistent infection? Trends Immunol. 2009;30(1):1–7.
Article
CAS
PubMed
Google Scholar
Hou W, Tian Q, Zheng J, Bonkovsky HL. MicroRNA‐196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology. 2010;51(5):1494–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007;449(7164):919–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ajizian SJ, English BK, Meals EA. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis. 1999;179(4):939–44.
Article
CAS
PubMed
Google Scholar
Haddad EB, Birrell M, McCluskie K, Ling A, Webber SE, Foster ML, et al. Role of p38 MAP kinase in LPS-induced airway inflammation in the rat. Br J Pharmacol. 2001;132(8):1715–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmeck B, Zahlten J, Moog K, van Laak V, Huber S, Hocke AC, et al. Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor. J Biol Chem. 2004;279(51):53241–7.
Article
CAS
PubMed
Google Scholar
Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS, Yang SH, et al. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci U S A. 2012;109(7):E423–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, et al. MiR-92b and miR‐9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 2009;19(3):375–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao JJ, Hua YJ, Sun DG, Meng XX, Xiao HS, Ma X. Genome-wide microRNA profiling in human fetal nervous tissues by oligonucleotide microarray. Childs Nervs Syst. 2006;22(11):1419–25.
Article
Google Scholar
Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH, Wilson SW. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 2007;8(8):R173.
Article
PubMed
PubMed Central
Google Scholar
Barturen G, Rueda A, Hamberg M. sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments. Meth Next Generation Sequencing. 2014;1(1):2084–7173.
Article
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57(1):289–300.
Google Scholar
Liang G, Malmuthuge N, McFadden TB, Bao H, Griebel PJ, Stothard P, et al. Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life. PLoS One. 2014;9(3):e92592.
Article
PubMed
PubMed Central
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1.
Article
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58(10):1375–81.
Article
CAS
PubMed
Google Scholar
Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Konishi H, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102(7):1174–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi QS, Weiland M, Qi RQ, Gao XH, Poisson LM, Zhou L. Identification of mouse serum miRNA endogenous references by global gene expression profiles. PLoS One. 2012;7(2):e31278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bae IS, Chung KY, Yi J, Kim TI, Choi HS, Cho YM, et al. Identification of reference genes for relative quantification of circulating microRNAs in bovine serum. PLoS One. 2015;10(3):e0122554.
Article
PubMed
PubMed Central
Google Scholar