Tanksley SD, McCouch SR. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science. 1997;277(5329):1063–66.
Article
CAS
PubMed
Google Scholar
Clayton WD, Renoize SA. Genera: Graminum grasses of the world Kew bulletin additional series XIII. Royal Botanical Gardens, Kew. 1986
Aggarwal RK, Brar DS, Khush GS. Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization. Mol Gen Genet. 1997;254(1):1–12.
Article
CAS
PubMed
Google Scholar
Oka HI. Origin of cultivated rice, Developments in crop science, vol. 14. Amsterdam: Elsevier; 1988.
Book
Google Scholar
Wei X, Qiao WH, Chen YT, Wang RS, Cao LR, Zhang WX, et al. Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol Ecol. 2012;21:5073–87.
Article
CAS
PubMed
Google Scholar
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42:961–67.
Article
CAS
PubMed
Google Scholar
Sun CQ, Wang XK, Li ZC, Yoshimura A, Iwata N. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet. 2001;102(1):157–62.
Article
CAS
Google Scholar
Sun CQ, Wang XK, Yoshimura A, Doi K. Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). Theor Appl Genet. 2002;104(8):1335–45.
Article
CAS
PubMed
Google Scholar
Shan JX, Zhu MZ, Shi M, Gao JP, Lin HX. Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theor Appl Genet. 2009;119(5):827–36.
Article
CAS
PubMed
Google Scholar
Gu XY, Kianian SF, Foley ME. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics. 2004;166(3):1503–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bian XF, Liu X, Zhao ZG, Jiang L, Gao H, Zhang YH, et al. Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep. 2011;30:2243–54.
Article
CAS
PubMed
Google Scholar
Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science. 2006;311(5769):1936–39.
Article
CAS
PubMed
Google Scholar
Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, et al. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet. 2006;112(3):570–80.
Article
CAS
PubMed
Google Scholar
Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet. 2012;44(1):32–9.
Article
Google Scholar
Li ZK, Pinson SRM, Stansel JW, Park WD. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L). Theor Appl Genet. 1995;91(2):374–81.
CAS
PubMed
Google Scholar
Mccouch SR, Doerge RW. QTL Mapping in rice. Trends Genet. 1995;11(12):482–87.
Article
CAS
PubMed
Google Scholar
Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol. 1997;35(1-2):145–53.
Article
CAS
PubMed
Google Scholar
HuangN M, McCouch SR, Mew T, Parco A, Guiderdoni E. Development of an RFLP map from a doubled haploid population in rice. Rice Genet Newsl. 1994;11:134–37.
Google Scholar
Tsunematsu H, Yoshimura A, Harushima Y, Nagamura Y, Kurata N, Yano M, et al. RFLP framework map using recombinant inbred lines in rice. Breeding Sci. 1996;46(3):279–84.
Google Scholar
Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet. 1996;92(2):191–203.
Article
CAS
PubMed
Google Scholar
Bernacchi D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S. Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet. 1998;97(3):381–97.
Article
CAS
Google Scholar
Yano M. Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol. 2001;4(2):130–35.
Article
CAS
PubMed
Google Scholar
Ali ML, Sanchez PL, Yu S, Lorieux M, Eizenga GC. Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice. 2010;3(4):218–34.
Article
Google Scholar
Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica. 1994;79(3):175–79.
Article
CAS
Google Scholar
Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001;2(12):983–89.
Article
CAS
PubMed
Google Scholar
Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.). Rice Genet Newsl. 1997;14:39–41.
CAS
Google Scholar
Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed Sci. 2005;55(1):65–73.
Article
CAS
Google Scholar
Bian JM, Jiang L, Liu LL, Wei XJ, Xiao YH, Zhang LJ, et al. Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Breed Sci. 2010;60(4):305–13.
Article
Google Scholar
Xu J, Zhao Q, Du P, Xu C, Wang B, Feng Q, et al. Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics. 2010;11(1):1–14.
Article
Google Scholar
Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breed Sci. 2002;52(4):319–25.
Article
CAS
Google Scholar
Takai T, Nonoue Y, Yamamoto SI, Yamanouchi U, Matsubara K, Liang ZW, et al. Development of chromosome segment substitution lines derived from backcross between indica donor rice cultivar ‘Nona bokra’ and japonica recipient cultivar ‘Koshihikari’. Breed Sci. 2007;57(3):257–61.
Article
Google Scholar
Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome. 2006;49(5):476–84.
Article
CAS
PubMed
Google Scholar
Ujiie K, Ishimaru K. Identification of chromosome regions affecting leaf area with rice chromosome segment substitution lines. Plant Prod Sci. 2013;16(1):31–6.
Article
Google Scholar
Yang DW, Zhang YD, Zhu Z, Chen T, Zhao QY, Yao S, et al. Substitutional mapping the cooked rice elongation by using chromosome segment substitution lines in rice. Mol Plant Breed. 2013;4(13):107–15.
Google Scholar
Shen GJ, Xing YZ. Two novel QTLs for heading date are identified using a set of chromosome segment substitution lines in rice (Oryza sativa L.). J Genet Genomics. 2014;41(12):659–62.
Article
CAS
PubMed
Google Scholar
Zhang YX, Wang Q, Jiang L, Liu LL, Wang BX, Shen YY, et al. Fine mapping of qSTV11
KAS, a major QTL for rice stripe disease resistance. Theor Appl Genet. 2011;122(8):1591–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan LB, Liu FX, Xue W, Wang GJ, Ye S, Zhu ZF, et al. Development of Oryza rufipogon and O. sativa introgression lines and assessment for yield-related quantitative trait loci. J Integr Plant Bio. 2007;49(6):871–84.
Article
CAS
Google Scholar
Hirabayashi H, Sato H, Nonoue Y, Kuno-Takemoto Y, Takeuchi Y, Kato H, et al. Development of introgression lines derived from Oryza rufipogon and O. glumaepatula in the genetic background of japonica cultivated rice (O. sativa L.) and evaluation of resistance to rice blast. Breed Sci. 2010;60(5):604–12.
Article
Google Scholar
Furuta T, Uehara K, Angeles-Shim RB, Shim J, Ashikari M, Takashi T. Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. Breed Sci. 2014;63(5):468–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, et al. Gramene, a tool for grass genomics. Plant Physiol. 2002;130:1606–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, et al. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res. 2006;88(2):93–104.
Article
CAS
PubMed
Google Scholar
Shim RA, Angeles ER, Ashikari M, Takashi T. Development and evaluation of Oryza glaberrima Steud. chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv. Koshihikari. Breed Sci. 2010;60:613–19.
Article
Google Scholar
Yoshimura A, Nagayama H, Kurakazu T, Sanchez PL, Doi K, Yamagata Y, et al. Introgression lines of rice (Oryza sativa L.) carrying a donor genome from the wild species, O. glumaepatula Steud. and O. meridionalis. Ng. Breed Sci. 2010;60:597–603.
Article
Google Scholar
McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, et al. Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica. 2006;154:317–39.
Article
Google Scholar
Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, et al. Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 9311 and japonica donor nipponbare. Plant Mol Biol Rep. 2009;27(2):126–31.
Article
CAS
Google Scholar
Zhu JY, Niu YC, Tao YJ, Wang J, Jian JB, Tai SS, et al. Construction of high-throughput genotyped chromosome segment substitution lines in rice (Oryza sativa L.) and QTL mapping for heading date. Plant Breeding. 2015;134(2):156–63.
Article
CAS
Google Scholar
Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Li J, et al. Genes from wild rice improve yield. Nature. 1996;384:223–24.
Article
CAS
Google Scholar
Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, et al. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics. 1998;150:899–909.
CAS
PubMed
PubMed Central
Google Scholar
Chen HD, He H, Zou YJ, Chen W, Yu RB, Liu X, et al. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet. 2011;123:869–79.
Article
PubMed
Google Scholar
Rogers SO, Bendich AJ. Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DS, editors. Plant Molecular Biology Manual, Book. Netherlands: Springer; 1989. p. 73–83.
Chapter
Google Scholar
Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet. 2000;100(5):697–712.
Article
CAS
Google Scholar
Panaud O, Chen X, McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L). Mol Genet Genomics. 1996;252(5):597–607.
CAS
Google Scholar
Young ND, Tanksley SD. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet. 1989;77:95–101.
Article
CAS
PubMed
Google Scholar
van Berloo R. GGT: Software for the display of graphical genotypes. J Hered. 1999;90(2):328–29.
Article
Google Scholar
Han LZ, Wei XH. Descriptors and data standard for rice (Oryza sativa L.). Beijing: Chinese Agriculture Press; 2006. In Chinese.
Google Scholar
Manly KF, Cudmore RHJ, Meer JM. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome. 2001;12:930–32.
Article
CAS
PubMed
Google Scholar