Amasino RM, Michaels SD. The timing of flowering. Plant Physiol. 2010;154(2):516–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bäurle I, Dean C. The timing of developmental transitions in plants. Cell. 2006;125(4):655–64.
Article
PubMed
Google Scholar
Jung C, Müller AE. Flowering time control and applications in plant breeding. Trends Plant Sci. 2009;14(10):563–73.
Article
CAS
PubMed
Google Scholar
Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis. Cell. 2010;141(3):550. 550. e552.
Article
Google Scholar
Simpson GG, Dean C. Arabidopsis, the Rosetta stone of flowering time? Science. 2002;296(5566):285–9.
Article
CAS
PubMed
Google Scholar
Song YH, Ito S, Imaizumi T. Flowering time regulation: photoperiod-and temperature-sensing in leaves. Trends Plant Sci. 2013;18(10):575–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanovsky MJ, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature. 2002;419(6904):308–12.
Article
CAS
PubMed
Google Scholar
An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Hepworth S, Mouradov A, Justin S, Turnbull C. CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development. 2004;131(15):3615–26.
Article
CAS
PubMed
Google Scholar
Tiwari SB, Shen Y, Chang HC, Hou Y, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol. 2010;187(1):57–66.
Article
CAS
PubMed
Google Scholar
Choi K, Kim J, Hwang HJ, Kim S, Park C, Sang YK, Lee I. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell. 2011;23(1):289–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 2003;35(5):613–23.
Article
CAS
PubMed
Google Scholar
Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. Plos Genet. 2006;2(7):e106.
Article
PubMed
Google Scholar
Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M. Regulation of flowerin CONSTANS acts in the phloem to regulate a systemic signal that g by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science. 2013;339(6120):704–7.
Article
CAS
PubMed
Google Scholar
Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. Elife. 2013;2:e00260.
PubMed
PubMed Central
Google Scholar
Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N. A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genomics. 2014;15(1):844.
Article
PubMed
PubMed Central
Google Scholar
da Silva JA T, Shinoyama H, Aida R, Matsushita Y, Raj SK, Chen F. Chrysanthemum biotechnology: quo vadis? Crit Rev Plant Sci. 2013;32(1):21–52.
Article
Google Scholar
Fu J, Wang L, Wang Y, Yang L, Yang Y, Dai S. Photoperiodic control of FT- like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiol Biochem. 2014;74:230–8.
Article
CAS
PubMed
Google Scholar
Ren H, Zhu F, Zheng C, Sun X, Wang W, Shu H. Transcriptome analysis reveals genes related to floral development in chrysanthemum responsive to photoperiods. Biochem Genet. 2013;51(1):20–32.
Article
CAS
PubMed
Google Scholar
Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot. 2012;63(3):1461–77.
Article
CAS
PubMed
Google Scholar
Chan A. Some factors affecting flower bud development of chrysanthemums. In: Reports of the 14th Int horticultural congress: 1955. 1955. p. 1023–39.
Google Scholar
Seeley J, Weise A. Photoperiodic response of garden and greenhouse chrysanthemums. In: Proceedings of the American Society for Horticultural Science: 1965: Amer Soc Horticultural Science 701 North Saint Asaph Street, Alexandria, VA 22314–1998; 1965. p. 464
Liu H, Sun M, Pan H, Cheng T, Wang J, Zhang Q. Whole-transcriptome analysis of differentially expressed genes in the vegetative buds, floral buds and buds of Chrysanthemum morifolium. PLoS One. 2015;10(5):e0128009.
Article
PubMed
PubMed Central
Google Scholar
Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, Hisamatsu T. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc Natl Acad Sci. 2013;110(42):17137–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell. 2014;26(5):2038–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
CAS
PubMed
Google Scholar
Berns MC, Nordström K, Cremer F, Tóth R, Hartke M, Simon S, Klasen JR, Bürstel I, Coupland G. Evening expression of Arabidopsis GIGANTEA is controlled by combinatorial interactions among evolutionarily conserved regulatory motifs. Plant Cell. 2014;26(10):3999–4018.
Article
CAS
PubMed
Google Scholar
Song YH, Estrada DA, Johnson RS, Kim SK, Lee SY, MacCoss MJ, Imaizumi T. Distinct roles of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci. 2014;111(49):17672–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Huang H, Ma Y, Fu J, Wang L, Dai S. Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence. Plant Cell Tissue Organ Cult. 2014;116(3):297–309.
Article
CAS
Google Scholar
Schäfer E, Nagy F. Photomorphogenesis in plants and bacteria: function and signal transduction mechanisms. Springer Science & Business Media; Heidelberg, Germany. 2006.
Teotia S, Tang G. To bloom or not to bloom: role of microRNAs in plant flowering. Mol Plant. 2015;8(3):359–77.
Article
CAS
PubMed
Google Scholar
Wang JW. Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot. 2014;65(17):4723–30.
Article
CAS
PubMed
Google Scholar
Smeekens S, Hellmann HA. Sugar sensing and signaling in plants. Front Plant Sci. 2014;5:113.
Article
PubMed
PubMed Central
Google Scholar
Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu J, Huang J, Wang G, Wang JW. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. Elife. 2013;2:e00269.
PubMed
PubMed Central
Google Scholar
Moghaddam MRB, Van den Ende W. Sugars, the clock and transition to flowering. Front Plant Sci. 2013;4:22.
Article
PubMed Central
Google Scholar
Rolland F, Sheen J. Sugar sensing and signalling networks in plants. Biochem Soc Trans. 2005;33(1):269–71.
Article
CAS
PubMed
Google Scholar
Kinter A, Catanzaro A, Monaco J, Ruiz M, Justement J, Moir S, Arthos J, Oliva A, Ehler L, Mizell S, Jackson R, Ostrowski M, Hoxie J, Offord R, Fauci AS. The phasic development of chrysanthemum as a basis for the regulation of vegetative growth and flowering in Japan. Acta Hortic. 1987;95(95):11880–5.
Google Scholar
Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell. 1995;80(6):847–57.
Article
CAS
PubMed
Google Scholar
Robson F, Costa MMR, Hepworth SR, Vizir I, Reeves PH, Putterill J, Coupland G. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 2001;28(6):619–31.
Article
CAS
PubMed
Google Scholar
Wang CQ, Guthrie C, Sarmast MK, Dehesh K. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell Online. 2014;26(9):3589–602.
Article
CAS
Google Scholar
Bai B, Zhao J, Li Y, Zhang F, Zhou J, Chen F, Xie X. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Plant Sci. 2016;247:25–34.
Article
CAS
PubMed
Google Scholar
Wong A, Hecht V, Picard K, Diwadkar P, Laurie RE, Wen J, Mysore K, Macknight RC, Weller JL. Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula. Front Plant Sci. 2014;5(17):486.
PubMed
PubMed Central
Google Scholar
Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci. 2011;68(12):2013–37.
Article
CAS
PubMed
Google Scholar
Olszewski N, Sun T-p, Gubler F. Gibberellin signaling biosynthesis, catabolism, and response pathways. Plant Cell. 2002;14(1):S61–80.
CAS
PubMed
PubMed Central
Google Scholar
Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z-L, Powers SJ, Gong F, Phillips AL, Hedden P, Sun TP, Thomas SG. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell. 2006;18(12):3399–414.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Liu Q, Yao T, Fu X. Shedding light on integrative GA signaling. Curr Opin Plant Biol. 2014;21:89–95.
Article
CAS
PubMed
Google Scholar
Ramachandran S, Hiratsuka K, Chua NH. Transcription factors in plant growth and development. Curr Opin Genet Dev. 1994;4(5):642–6.
Article
CAS
PubMed
Google Scholar
Liu L, Zhang J, Adrian J, Gissot L, Coupland G, Yu D, Turck F. Elevated levels of MYB30 in the phloem accelerate flowering in Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS One. 2014;9(2):e89799.
Article
PubMed
PubMed Central
Google Scholar
Yan Y, Shen L, Chen Y, Bao S, Thong Z, Yu H. A MYB-Domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev Cell. 2014;30(4):437–48.
Article
CAS
PubMed
Google Scholar
Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H, Zhou G, Li T, Yang X. Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol. 2012;51(2):160–73.
Article
CAS
PubMed
Google Scholar
Smaczniak C, Immink RG, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QP, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci. 2012;109(5):1560–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S, Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L, Coupland G, Kater MM. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 2013;14(6):R56.
Article
PubMed
PubMed Central
Google Scholar
Qu GZ, Zheng T, Liu G, Wang W, Zang L, Liu H, Yang C. Overexpression of a MADS-box gene from Birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco. PLoS One. 2013;8(5):e63398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernandez DE, Wang CT, Zheng Y, Adamczyk B, Singhal R, Hall PK, Perry SE. The MADS-domain factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, are necessary to block floral gene expression during the vegetative phase. Plant Physiol. 2014;165(4):1591–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484(7393):242–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leivar P, Monte E, Oka Y, Liu T, Carle C, Castillon A, Huq E, Quail PH. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol. 2008;18(23):1815–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu J, Yang L, Dai S. Conservation of Arabidopsis thaliana circadian clock genes in Chrysanthemum lavandulifolium. Plant Physiol Biochem. 2014;80:337–47.
Article
CAS
PubMed
Google Scholar
Chao Y, Zhang T, Yang Q, Kang J, Sun Y, Gruber MY, Qin Z. Expression of the alfalfa CCCH-type zinc finger protein gene MsZFN delays flowering time in transgenic Arabidopsis thaliana. Plant Sci. 2014;215:92–9.
Article
PubMed
Google Scholar
Cai Y, Chen X, Xie K, Xing Q, Wu Y, Li J, Du C, Sun Z, Guo Z. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS One. 2014;9(7):e102529.
Article
PubMed
PubMed Central
Google Scholar
Luo X, Sun X, Liu B, Zhu D, Bai X, Cai H, Ji W, Cao L, Wu J, Wang M, Ding X, Zhu Y. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis. PLoS One. 2013;8(8):e73295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Medrano L, Ohashi K, Fletcher JC, Yu H, Sakai H, Meyerowitz EM. HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell. 2004;16(10):2586–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(Web Server issue):293–7.
Article
Google Scholar
Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–95.
CAS
PubMed
Google Scholar
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):1165–88.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar