Dry IB, Rigden JE, Krake LR, Mullineaux PM, Rezaian MA (1993) Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J Gen Viro 74(1):147–151
Article
CAS
Google Scholar
Akad F, Eybishtz A, Edelbaum D, Gorovits R, Dar-Issa O, Iraki N, Czosnek H (2007) Making a friend from a foe: expressing a GroEL gene from the whitefly bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus. Arch Virol 152(7):1323–1339
Article
CAS
PubMed
Google Scholar
Pakkianathan BC, Kontsedalov S, Lebedev G, Mahadav A, Zeidan M, Czosnek H et al (2015) Replication of tomato yellow leaf curl virus in its whitefly vector, Bemisia tabaci. J Virol 89(19):9791–9803
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghanim M, Morin S, Czosnek H (2001) Rate of tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the Whitefly Bemisia tabaci. Phytopathology 91(2):188–196
Ghanim M (2014) A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res 186:47–54
Article
CAS
PubMed
Google Scholar
Huang Y, Ma HY, Huang W, Wang F, Xiong AS (2016) Comparative proteomic analysis provides novel insight into the interaction between resistant vs susceptible tomato cultivars and TYLCV infection. BMC Plant Biol 16(1):162
Article
PubMed
PubMed Central
Google Scholar
Gafni Y, Epel BL (2002) The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Physiol Mol Plant P 60(5):231–241
Article
CAS
Google Scholar
Wege C (2007). Movement and localization of tomato yellow leaf curl viruses in the infected plant. In: Czosnek H editor. Tomato Yellow Leaf Curl Virus Disease. Springer Netherlands. p. 185–206.
Agarwal P, Reddy M P, Chikara J (2011) WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38(6):3883-3896.
Li MY, Xu ZS, Tian C, Huang Y, Wang F, Xiong AS (2016) Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants. Sci Rep 6:23101
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiguro S, Nakamura K (1994) Characterization of a cdna-encoding a novel DNA-binding protein, Spf1, that recognizes Sp8 sequences in the 5' upstream regions of genes-coding for sporamin and beta-amylase from sweet-potato. Mol Gen Genet 244(6):563–571
Article
CAS
PubMed
Google Scholar
Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7(5):491–498
Article
PubMed
Google Scholar
Wang QS, Wang MH, Zhang XZ, Hao BJ, Kaushik SK, Pan YC (2011) WRKY gene family evolution in Arabidopsis thaliana. Genetica 139(8):973–983
Article
CAS
PubMed
Google Scholar
Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, Zhuang J (2016) Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Mol Genet Genomics 291(1):255–269
Article
CAS
PubMed
Google Scholar
Wu KL, Guo ZJ, Wang HH, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12(1):9–26
Article
CAS
PubMed
Google Scholar
Tang J, Wang F, Hou XL, Wang Z, Huang ZN (2014) Genome-wide fractionation and identification of WRKY transcription factors in Chinese cabbage (Brassica rapa ssp pekinensis) reveals collinearity and their expression patterns under abiotic and biotic stresses. Plant Mol Biol Rep 32(4):781–795
Article
CAS
Google Scholar
Zhang YJ, Wang LJ (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–12
Article
CAS
PubMed
PubMed Central
Google Scholar
Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206
Article
CAS
PubMed
Google Scholar
Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe In 16(4):295–305
Article
CAS
Google Scholar
Wang YY, Feng L, Zhu YX, Li Y, Yan HW, Xiang Y (2015) Comparative genomic analysis of the WRKY III gene family in populus, grape, Arabidopsis and rice. Biol Direct 10:48
Article
PubMed
PubMed Central
Google Scholar
Nakayama A, Fukushima S, Goto S, Matsushita A, Shimono M, Sugano S et al (2013) Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. BMC Plant Biol 13:1–11
Article
Google Scholar
Cho SM, Kang EY, Min KH, Lee YK, Kim YC, Yang KY et al (2012) A positive regulatory role of the watermelon ClWRKY70 gene for disease resistance in transgenic Arabidopsis thaliana. Biol Plantarum 56(3):560–565
Article
CAS
Google Scholar
Gong XQ, Zhang JY, Hu JB, Wang W, Wu H, Zhang QH et al (2015) FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene. Plant Cell Environ 38(11):2248–2262
Article
CAS
PubMed
Google Scholar
Jiang YZ, Duan YJ, Yin J, Ye SL, Zhu JR, Zhang FQ et al (2014) Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot 65(22):6629–6644
Article
PubMed
PubMed Central
Google Scholar
Rushton PJ, Somssich IE, Ringler P, Shen QXJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258
Article
CAS
PubMed
Google Scholar
Cheng HT, Liu HB, Deng Y, Xiao JH, Li XH, Wang SP (2015) The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. Plant Physiol 167(3):1087–1099
Article
CAS
PubMed
PubMed Central
Google Scholar
Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y et al (2013) AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73(3):483–495
Article
CAS
PubMed
Google Scholar
Atamian HS, Eulgem T, Kaloshian I (2012) SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato. Planta 235(2):299–309
Article
CAS
PubMed
Google Scholar
Kumar K, Srivastava V, Purayannur S, Kaladhar VC, Cheruvu PJ, Verma PK (2016) WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s). DNA Res 23(3):225–239
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15(4):431–437
Article
CAS
PubMed
Google Scholar
Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J et al (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20(3):509–523
Article
CAS
PubMed
PubMed Central
Google Scholar
Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59
Article
CAS
PubMed
Google Scholar
Kennedy GG (2003) Tomato, pests, parasitoids, and predators: Tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72
Article
CAS
PubMed
Google Scholar
Kil EJ, Kim S, Lee YJ, Byun HS, Park J, Seo H et al (2016) Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sci Rep 6:19013.
Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z et al (2012) Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics 287(6):495–513
Article
CAS
PubMed
Google Scholar
Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol Plant Microbe In 21(8):1015–1026
Article
CAS
Google Scholar
Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:1182–1187
Article
Google Scholar
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31(13):3497–3500
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Peterson D, Peterson N, Stercher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2028(2010):2731–2739
Article
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297
Article
PubMed
Google Scholar
Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27(1):295–296
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D et al (2009) Circos: An information aesthetic for comparative genomics. Genome Res 19(9):1639–1645
Article
CAS
PubMed
PubMed Central
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815
Article
Google Scholar
Shu Y, Tao Y, Wang S, Huang L, Yu X, Wang Z et al (2015) GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean. Plant Cell Rep 34(11):1927–1937
Article
CAS
PubMed
Google Scholar
Yan HX, Fu DQ, Zhu BZ, Liu HP, Shen XY, Luo YB (2012) Sprout vacuum-infiltration: a simple and efficient agroinoculation method for virus-induced gene silencing in diverse solanaceous species. Plant Cell Rep 31(9):1713–1722
Article
CAS
PubMed
Google Scholar
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen TZ, Lv YD, Zhao TM, Li N, Yang YW, Yu WG et al (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8(11):e80816
Article
PubMed
PubMed Central
Google Scholar
Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371
Article
CAS
PubMed
Google Scholar
Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62(14):4863–4874
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao J, Cheng HT, Li XH, Xiao JH, Xu CG, Wang SP (2013) Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol 163(4):1868–1882
Article
CAS
PubMed
PubMed Central
Google Scholar
Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Gene Dev 16(9):1139–1149
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641
Article
CAS
Google Scholar
Liu YL, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31(6):777–786
Article
CAS
PubMed
Google Scholar
Liu B, Hong YB, Zhang YF, Li XH, Huang L, Zhang HJ et al (2014) Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress. Plant Sci 227:145–156
Article
CAS
PubMed
Google Scholar
Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213(3):469–473
Article
CAS
PubMed
Google Scholar
Chen CH, Chen ZX (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42(2):387–396
Article
CAS
PubMed
Google Scholar
Xu XP, Chen CH, Fan BF, Chen ZX (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18(5):1310–1326
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyoike TW, Liburd OE, Webb SE (2008) Suppression of whiteflies, Bemisia tabaci (Hemiptera : Aleyrodidae) and incidence of cucurbit leaf crumple virus, a whitefly-transmitted virus of zucchini squash new to Florida, with mulches and imidacloprid. Fla Entomol 91(3):460–465
Article
Google Scholar
Webb SE, Akad F, NyoikeT W, Liburd E, Polston JE (2008) Whitefly-transmitted cucurbit leaf crumple virus in Florida. Entomol Nematol 91(3):460–465
Google Scholar
Wang JY, Yu WG, Yang YW, Li X, Chen TZ, Liu TL et al (2015) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep 5:16946
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorovits R, Czosnek H (2008) Expression of stress gene networks in tomato lines susceptible and resistant to tomato yellow leaf curl virus in response to abiotic stresses. Plant Physiol Bioch 46(4):482–492
Article
CAS
Google Scholar
Sade D, Sade N, Shriki O, Lerner S, Gebremedhin A, Karavani A et al (2014) Water balance, hormone homeostasis, and sugar signaling are all involved in tomato resistance to tomato yellow leaf curl virus. Plant Physiol 165(4):1684–1697
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou M, Yan J, Ma ZW, Zhou Y, Abbood NN, Liu JF et al (2012) Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events. PLoS One 7(7):e40649
Article
CAS
PubMed
PubMed Central
Google Scholar
Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 41(21):9764–9778
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai M, Qiu DY, Yuan T, Ding XH, Li HJ, Duan L et al (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31(1):86–96
CAS
PubMed
Google Scholar
Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150(4):1648–1655
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang SQ, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6(11):520–527
Article
CAS
PubMed
Google Scholar
Cvetkovska M, Rampitsch C, Bykova N, Xing T (2005) Genomic analysis of MAP kinase cascades in Arabidopsis defense responses. Plant Mol Biol Rep 23(4):331–343
Article
CAS
Google Scholar
Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414(6863):562–565
Article
CAS
PubMed
Google Scholar
Li S, Li K, Ju Z, Cao DY, Fu DQ, Zhu HL et al (2016) Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genomics 17:1–16
Article
Google Scholar
Li J, Kristiansen KA, Hansen BG, Halkier BA (2011) Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis. J Exp Bot 62(3):1337–1346
Article
CAS
PubMed
Google Scholar
Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CH, Chen ZX (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129(2):706–716
Article
CAS
PubMed
PubMed Central
Google Scholar
Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim HS, Park Y H, Nam H, Lee YM, Song K, Choi C et al (2014). Overexpression of the Brassica rapa, transcription factor WRKY12 results in reduced soft rot symptoms caused by Pectobacterium carotovorum, in Arabidopsis, and Chinese cabbage. Plant Biol 16(5):973-981
Huang Y, Zhang B, Sun S, Xing G, Wang F, Li M, Tian Y, Xiong A (2016) AP2/ERF transcription factors involved in response to tomato yellow leaf curly virus in tomato. Plant Genome 9:1–15
Article
Google Scholar
Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803
Article
CAS
PubMed
Google Scholar
Wang JY, Hu ZZ, Zhao TM, Yang YW, Chen TZ, Yang ML et al (2015) Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). BMC Genomics 16:1–14
Article
Google Scholar
Nimchuk Z, Eulgem T, Holt BE, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609
Article
CAS
PubMed
Google Scholar
Zhang GY, Chen M, Li LC, Xu ZS, Chen XP, Guo JM, Ma YZ (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796
Article
CAS
PubMed
PubMed Central
Google Scholar
Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126(4):1579–1587
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuhse TS, Peck SC, Hirt H, Boller T (2000) Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J Biol Chem 275(11):7521–7526
Article
CAS
PubMed
Google Scholar
Park CJ, Shin YC, Lee BJ, Kim KJ, Kim JK, Paek KH (2006) A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to tobacco mosaic virus and Xanthomonas campestris. Planta 223(2):168–179
Article
CAS
PubMed
Google Scholar