Jemal A. Trends in the leading causes of death in the United States, 1970-2002. JAMA. 2005;294:1255.
Article
CAS
PubMed
Google Scholar
Williams KW, Elmquist JK. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci. 2012;15:1350–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol. 2014;382:740–57.
Article
CAS
PubMed
Google Scholar
Drake TA, Schadt EE, Davis RC, Lusis AJ. Integrating genetic and gene expression data to study the metabolic syndrome and diabetes in mice. Am J Ther. 2005;12:503–11.
Article
PubMed
Google Scholar
Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17:141–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin C, Theodorides ML, McDaniel AH, Tordoff MG, Zhang Q, Li X, et al. QTL analysis of dietary obesity in C57BL/6byj X 129P3/J F2 mice: diet- and sex-dependent effects. PLoS One. 2013;8:e68776. Meyerhof W, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musselman LP, Fink JL, Narzinski K, Ramachandran PV, Hathiramani SS, Cagan RL, et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Model Mech. 2011;4:842–9.
Article
CAS
Google Scholar
Na J, Musselman LP, Pendse J, Baranski TJ, Bodmer R, Ocorr K, et al. A Drosophila model of high sugar diet-induced cardiomyopathy. PLoS Genet. 2013;9:e1003175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pendse J, Ramachandran PV, Na J, Narisu N, Fink JL, Cagan RL, et al. A Drosophila functional evaluation of candidates from human genome-wide association studies of type 2 diabetes and related metabolic traits identifies tissue-specific roles for dHHEX. BMC Genomics. 2013;14:136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teague BD, Clark AG, Doane WW. Developmental analysis of lipids from wild-type and adipose60 mutants of Drosophila melanogaster. J Exp Zool. 1986;240:95–104.
Article
CAS
PubMed
Google Scholar
Hader T, Muller S, Aguilera M, Eulenberg KG, Steuernagel A, Ciossek T, et al. Control of triglyceride storage by a WD40/TPR-domain protein. EMBO Rep. 2003;4:511–6.
Article
PubMed
PubMed Central
Google Scholar
Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP. Control of fat storage by a Drosophila PAT domain protein. Curr Biol CB. 2003;13:603–6.
Article
PubMed
Google Scholar
Xu X, Gopalacharyulu P, Seppänen-Laakso T, Ruskeepää A-L, Aye CC, Carson BP, et al. Insulin signaling regulates fatty acid catabolism at the level of CoA activation. PLoS Genet. 2012;8:e1002478. Rulifson E, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karpac J, Biteau B, Jasper H. Misregulation of an adaptive metabolic response contributes to the age-related disruption of lipid homeostasis in Drosophila. Cell Rep. 2013;4:1250–61.
Article
CAS
PubMed
Google Scholar
Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, et al. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab. 2010;12:533–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, et al. The drosophila melanogaster genetic reference panel. Nature. 2012;482:173–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang W, Massouras A, Inoue Y, Peiffer J, Ramia M, Tarone AM, et al. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 2014;24:1193–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jumbo-Lucioni P, Ayroles JF, Chambers M, Jordan KW, Leips J, Mackay TF, et al. Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster. BMC Genomics. 2010;11:297.
Article
PubMed
PubMed Central
Google Scholar
Reed LK, Lee K, Zhang Z, Rashid L, Poe A, Hsieh B, et al. Systems genomics of metabolic phenotypes in wild-type Drosophila melanogaster. Genetics. 2014;197:781–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobson AJ, Chaston JM, Newell PD, Donahue L, Hermann SL, Sannino DR, et al. Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nat Commun. 2015;6:6312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unckless RL, Rottschaefer SM, Lazzaro BP. The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster. PLoS Genet. 2015;11:e1005030. Cherry S, editor.
Article
PubMed
PubMed Central
Google Scholar
Vonesch SC, Lamparter D, Mackay TFC, Bergmann S, Hafen E. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster. PLoS Genet. 2016;12:e1005616. Barsh GS, editor.
Article
PubMed
PubMed Central
Google Scholar
Galesloot TE, van Steen K, Kiemeney LALM, Janss LL, Vermeulen SH. A comparison of multivariate genome-wide association methods. PLoS One. 2014;9:e95923.
Article
PubMed
PubMed Central
Google Scholar
Unckless RL, Rottschaefer SM, Lazzaro BP. A genome-wide association study for nutritional indices in Drosophila. G3 Bethesda Md. 2015;5:417–25.
Article
CAS
Google Scholar
Harbison ST, Yamamoto AH, Fanara JJ, Norga KK, Mackay TFC. Quantitative trait loci affecting starvation resistance in Drosophila melanogaster. Genetics. 2004;166:1807–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed LK, Williams S, Springston M, Brown J, Freeman K, DesRoches CE, et al. Genotype-by-diet interactions drive metabolic phenotype variation in Drosophila melanogaster. Genetics. 2010;185:1009–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell. 2009;139:149–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol CB. 2004;14:885–90.
Article
CAS
PubMed
Google Scholar
Mair W, Piper MDW, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 2005;3:e223.
Article
PubMed
PubMed Central
Google Scholar
Vargas MA, Luo N, Yamaguchi A, Kapahi P. A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol. 2010;20:1006–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gendron CM, Kuo T-H, Harvanek ZM, Chung BY, Yew JY, Dierick HA, et al. Drosophila life span and physiology are modulated by sexual perception and reward. Science. 2014;343:544–8.
Article
CAS
PubMed
Google Scholar
Burger JMS, Hwangbo DS, Corby-Harris V, Promislow DEL. The functional costs and benefits of dietary restriction in Drosophila. Aging Cell. 2007;6:63–71.
Article
CAS
PubMed
Google Scholar
Morris SNS, Coogan C, Chamseddin K, Fernandez-Kim SO, Kolli S, Keller JN, et al. Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim Biophys Acta BBA Mol Basis Dis. 1822;2012:1230–7.
Google Scholar
Bross TG, Rogina B, Helfand SL. Behavioral, physical, and demographic changes in Drosophila populations through dietary restriction. Aging Cell. 2005;4:309–17.
Article
CAS
PubMed
Google Scholar
Piper MDW, Skorupa D, Partridge L. Diet, metabolism and lifespan in Drosophila. Exp Gerontol. 2005;40:857–62.
Article
CAS
PubMed
Google Scholar
Katewa SD, Demontis F, Kolipinski M, Hubbard A, Gill MS, Perrimon N, et al. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 2012;16:97–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi G, Di Y, Emerson S, Cumbie JS, Chang JH. Length bias correction in gene ontology enrichment analysis using logistic regression. PLoS One. 2012;7:e46128. Steinke D, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee G, Park JH. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics. 2004;167:311–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meunier N, Belgacem YH, Martin J-R. Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J Exp Biol. 2007;210:1424–34.
Article
PubMed
Google Scholar
Johnson EC, Kazgan N, Bretz CA, Forsberg LJ, Hector CE, Worthen RJ, et al. Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila. PLoS One. 2010;5:e12799. Hassan BA, editor.
Article
PubMed
PubMed Central
Google Scholar
Schifano ED, Li L, Christiani DC, Lin X. Genome-wide association analysis for multiple continuous secondary phenotypes. Am J Hum Genet. 2013;92:744–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
OMIM - Online Mendelian Inheritance in Man. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore. 2015. http://omim.org/. Accessed 14 Sept 2015.
Howard A, Rogers AN. Role of translation initiation factor 4G in lifespan regulation and age-related health. Ageing Res Rev. 2014;13:115–24.
Article
CAS
PubMed
Google Scholar
dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, et al. FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res. 2015;43:D690–7.
Article
PubMed
Google Scholar
Pesch Y-Y, Riedel D, Patil KR, Loch G, Behr M. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep. 2016;6:18340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer R, Voelzmann A, Breiden B, Schepers U, Farwanah H, Hahn I, et al. Schlank, a member of the ceramide synthase family controls growth and body fat in Drosophila. EMBO J. 2009;28:3706–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
D’mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM. Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem. 1994;269:15451–9.
PubMed
Google Scholar
Tricoire H, Battisti V, Trannoy S, Lasbleiz C, Pret A-M, Monnier V. The steroid hormone receptor EcR finely modulates Drosophila lifespan during adulthood in a sex-specific manner. Mech Ageing Dev. 2009;130:547–52.
Article
CAS
PubMed
Google Scholar
Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, et al. The transgenic RNAi project at Harvard Medical School: resources and validation. Genetics. 2015;201:843–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodman AOG, Murgatroyd PR, Medina-Gomez G, Wood NI, Finer N, Vidal-Puig AJ, et al. The metabolic profile of early Huntington’s disease- a combined human and transgenic mouse study. Exp Neurol. 2008;210:691–8.
Article
CAS
PubMed
Google Scholar
Aziz NA, van der Marck MA, Pijl H, Olde Rikkert MGM, Bloem BR, Roos RAC. Weight loss in neurodegenerative disorders. J Neurol. 2008;255:1872–80.
Article
CAS
PubMed
Google Scholar
Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol. 2002;156:689–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koch N, Kobler O, Thomas U, Qualmann B, Kessels MM. Terminal axonal arborization and synaptic bouton formation critically rely on abp1 and the arp2/3 complex. PLoS One. 2014;9:e97692.
Article
PubMed
PubMed Central
Google Scholar
Crowner D, Le Gall M, Gates MA, Giniger E. Notch steers Drosophila ISNb motor axons by regulating the Abl signaling pathway. Curr Biol CB. 2003;13:967–72.
Article
CAS
PubMed
Google Scholar
Pipes GC, Lin Q, Riley SE, Goodman CS. The Beat generation: a multigene family encoding IgSF proteins related to the Beat axon guidance molecule in Drosophila. Dev Camb Engl. 2001;128:4545–52.
CAS
Google Scholar
Chen S, Spletter M, Ni X, White KP, Luo L, Long M. Frequent recent origination of brain genes shaped the evolution of foraging behavior in Drosophila. Cell Rep. 2012;1:118–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seong KH, Ogashiwa T, Matsuo T, Fuyama Y, Aigaki T. Application of the gene search system to screen for longevity genes in Drosophila. Biogerontology. 2001;2:209–17.
Article
CAS
PubMed
Google Scholar
Chibalin AV, Leng Y, Vieira E, Krook A, Björnholm M, Long YC, et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell. 2008;132:375–86.
Article
CAS
PubMed
Google Scholar
Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375:2267–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Y-H, Chen Y-C, Kao T-Y, Lin Y-C, Hsu T-E, Wu Y-C, et al. Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans. Aging Cell. 2014;13:755–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, et al. The BDGP gene disruption project: single transposon insertions associated with 40 % of Drosophila genes. Genetics. 2004;167:761–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solon-Biet SM, McMahon AC, Ballard JWO, Ruohonen K, Wu LE, Cogger VC, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in Ad Libitum-Fed Mice. Cell Metab. 2014;19:418–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng C-W, Madia F, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11:843–54.
Article
CAS
PubMed
Google Scholar
Yoon M-S, Sun Y, Arauz E, Jiang Y, Chen J. Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect. J Biol Chem. 2011;286:29568–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kain P, Badsha F, Hussain SM, Nair A, Hasan G, Rodrigues V. Mutants in phospholipid signaling attenuate the behavioral response of adult Drosophila to trehalose. Chem Senses. 2010;35:663–73.
Article
CAS
PubMed
Google Scholar
Kain P, Chakraborty TS, Sundaram S, Siddiqi O, Rodrigues V, Hasan G. Reduced odor responses from antennal neurons of Gq, phospholipase C, and rdgA mutants in Drosophila support a role for a phospholipid intermediate in insect olfactory transduction. J Neurosci. 2008;28:4745–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raghu P, Usher K, Jonas S, Chyb S, Polyanovsky A, Hardie RC. Constitutive activity of the light-sensitive channels TRP and TRPL in the Drosophila diacylglycerol kinase mutant, rdgA. Neuron. 2000;26:169–79.
Article
CAS
PubMed
Google Scholar
Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, et al. Drosophila auditory organ genes and genetic hearing defects. Cell. 2012;150:1042–54.
Article
CAS
PubMed
Google Scholar
Kwon Y, Shim H-S, Wang X, Montell C. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci. 2008;11:871–3.
Article
CAS
PubMed
Google Scholar
Yoon M-S, Rosenberger CL, Wu C, Truong N, Sweedler JV, Chen J. Rapid mitogenic regulation of the mTORC1 inhibitor, DEPTOR, by phosphatidic acid. Mol Cell. 2015;58:549–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell. 2004;7:167–78.
Article
CAS
PubMed
Google Scholar
Teleman AA. 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes Dev. 2005;19:1844–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sathyanarayana P, Barthwal MK, Kundu CN, Lane ME, Bergmann A, Tzivion G, et al. Activation of the Drosophila MLK by ceramide reveals TNF-alpha and ceramide as agonists of mammalian MLK3. Mol Cell. 2002;10:1527–33.
Article
CAS
PubMed
Google Scholar
Pronk GJ, Ramer K, Amiri P, Williams LT. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science. 1996;271:808–10.
Article
CAS
PubMed
Google Scholar
Kraut R. Roles of sphingolipids in Drosophila development and disease: Roles of sphingolipids in Drosophila. J Neurochem. 2011;116:764–78.
Article
CAS
PubMed
Google Scholar
Botella JA, Baines IA, Williams DD, Goberdhan DC, Proud CG, Wilson C. The Drosophila cell shape regulator c-Jun N-terminal kinase also functions as a stress-activated protein kinase. Insect Biochem Mol Biol. 2001;31:839–47.
Article
CAS
PubMed
Google Scholar
Gaullier JM, Simonsen A, D’Arrigo A, Bremnes B, Stenmark H, Aasland R. FYVE fingers bind PtdIns(3)P. Nature. 1998;394:432–3.
Article
CAS
PubMed
Google Scholar
Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, et al. Defining the specificity space of the human Src homology 2 domain. Mol Cell Proteomics. 2007;7:768–84.
Article
PubMed
Google Scholar
Hietakangas V, Cohen SM. Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev. 2007;21:632–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alb JG, Cortese JD, Phillips SE, Albin RL, Nagy TR, Hamilton BA, et al. Mice lacking phosphatidylinositol transfer protein- exhibit spinocerebellar degeneration, intestinal and hepatic steatosis, and hypoglycemia. J Biol Chem. 2003;278:33501–18.
Article
CAS
PubMed
Google Scholar
Yea K, Kim J, Yoon JH, Kwon T, Kim JH, Lee BD, et al. Lysophosphatidylcholine activates adipocyte glucose uptake and lowers blood glucose levels in Murine models of diabetes. J Biol Chem. 2009;284:33833–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rancoule C, Attané C, Grès S, Fournel A, Dusaulcy R, Bertrand C, et al. Lysophosphatidic acid impairs glucose homeostasis and inhibits insulin secretion in high-fat diet obese mice. Diabetologia. 2013;56:1394–402.
Article
CAS
PubMed
Google Scholar
Ersoy BA, Tarun A, D’Aquino K, Hancer NJ, Ukomadu C, White MF, et al. Phosphatidylcholine transfer protein interacts with Thioesterase Superfamily Member 2 to attenuate insulin signaling. Sci Signal. 2013;6:ra64.
Article
PubMed
PubMed Central
Google Scholar
Phan J, Hickey MA, Zhang P, Chesselet M-F, Reue K. Adipose tissue dysfunction tracks disease progression in two Huntington’s disease mouse models. Hum Mol Genet. 2009;18:1006–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aziz NA, van der Burg JMM, Landwehrmeyer GB, Brundin P, Stijnen T, EHDI Study Group, et al. Weight loss in Huntington disease increases with higher CAG repeat number. Neurology. 2008;71:1506–13.
Article
CAS
PubMed
Google Scholar
Petersén Å, Björkqvist M. Hypothalamic-endocrine aspects in Huntington’s disease. Eur J Neurosci. 2006;24:961–7.
Article
PubMed
Google Scholar
Mochel F, Haller RG. Energy deficit in Huntington disease: why it matters. J Clin Invest. 2011;121:493–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pouladi MA, Xie Y, Skotte NH, Ehrnhoefer DE, Graham RK, Kim JE, et al. Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet. 2010;19:1528–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, et al. Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 1995;81:811–23.
Article
CAS
PubMed
Google Scholar
Lumsden AL, Henshall TL, Dayan S, Lardelli MT, Richards RI. Huntingtin-deficient zebrafish exhibit defects in iron utilization and development. Hum Mol Genet. 2007;16:1905–20.
Article
CAS
PubMed
Google Scholar
BDSC. Indiana University, Bloomington. 2015. http://flystocks.bio.indiana.edu/. Accessed 14 Sept 2015.
MacKay Lab. Genotype Files. 2014. http://dgrp2.gnets.ncsu.edu/data.html. Accessed 3 Sept 2014.
Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, et al. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics. 2011;12:357.
Article
PubMed
PubMed Central
Google Scholar
Hu et al. Disease Gene Query. 2015. http://www.flyrnai.org/cgi-bin/DRSC_DG_query.pl. Accessed 14 Sep 2015.
Perktold et al. StatsModels: Statistics in Python — statsmodels 0.6.1. 2015. http://statsmodels.sourceforge.net/stable/. Accessed 15 Sep 2015.
Beavis W. Molecular Dissection of Complex Traits. QTL Anal. Power Precis. Accuracy. New York: CRC Press; 1998. p. 145–62.
Google Scholar
Garlapow ME, Huang W, Yarboro MT, Peterson KR, Mackay TFC. Quantitative Genetics of Food Intake in Drosophila melanogaster. PLoS One. 2015;10:e0138129. Ko DC, editor.
Article
PubMed
PubMed Central
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
Google Scholar
Dietzl G, Chen D, Schnorrer F, Su K-C, Barinova Y, Fellner M, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007;448:151–6.
Article
CAS
PubMed
Google Scholar
Vienna Biocenter Core Facilities GmbH. VDRC Stock Center: Main Page. 2015. http://stockcenter.vdrc.at/control/maincited. Accessed 14 Sep 2015.
Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Dev Camb Engl. 1993;118:401–15.
CAS
Google Scholar
Osterwalder T, Yoon KS, White BH, Keshishian H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. U. S. A. 2001;98:12596-601.