Sundar AR, Barnabas EL, Malathi P, Viswanathan R. A mini-review on smut disease of sugarcane caused by Sporisorium scitamineum. In: Mworia J, editor. Botany. Croatia: InTech Press; 2012. p. 109–28.
Google Scholar
Su YC, Yang YT, Peng Q, Zhou DG, Chen Y, Wang ZQ, et al. Development and application of a rapid and visual loop-mediated isothermal amplification for the detection of Sporisorium scitamineum in sugarcane. Sci Rep. 2016;6:23994.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su YC, Wang SS, Guo JL, Xue BT, Xu LP, Que YX. A TaqMan real-time PCR assay for detection and quantification of Sporisorium scitamineum in sugarcane. Sci Word J. 2013;2013:942682.
Google Scholar
de Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GMQC, Del Bem LE, Vicentini R, et al. Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics. 2014;15:540.
Article
PubMed
PubMed Central
Google Scholar
Que YX, Xu LP, Wu QB, Liu YF, Ling H, Liu YH, et al. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. BMC Genomics. 2014;15:996.
Article
PubMed
PubMed Central
Google Scholar
Waller J. Sugarcane smut (Ustilago scitaminea) in Kenya: II. Infection and resistance. Trans Br Mycol Soc. 1970;54:405–14.
Article
Google Scholar
Raboin LM, Offmann B, Hoarau JY, Notaise J, Costet L, Telismart H, et al. Undertaking genetic mapping of sugarcane smut resistance. Proc S Afr Sug Technol Ass. 2001;75:94–8.
Google Scholar
Lin YQ, Chen RK, Gong DM. Analysis of quantitative inheritance for smut resistance in sugarcane. J Fujian Agric Univ (China). 1996;25:271–5.
Google Scholar
Thokoane L, Rutherford R. cDNA-AFLP differential display of sugarcane (Saccharum spp. hybrids) genes induced by challenge with the fungal pathogen Ustilago scitaminea (sugarcane smut). Proc S Afr Sug Technol Ass. 2001;75:104–7.
Google Scholar
Borrás-Hidalgo O, Thomma BP, Carmona E, Borroto CJ, Pujol M, Arencibia A, et al. Identification of sugarcane genes induced in disease-resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiol Biochem. 2005;43:1115–21.
Article
PubMed
Google Scholar
Que YX, Lin JW, Song XX, Xu LP, Chen RK. Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP. Biomed Res Int. 2011;2011:160934.
Google Scholar
Wu QB, Xu LP, Guo JL, Su YC, Que YX. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. Biomed Res Int. 2013;2013:298920.
PubMed
PubMed Central
Google Scholar
Que YX, Su YC, Guo JL, Wu QB, Xu LP. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One. 2014;9:e106476.
Article
PubMed
PubMed Central
Google Scholar
Pan ZY, Zeng YL, An JY, Ye JL, Xu Q, Deng XX. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteomics. 2012;75:2670–84.
Article
CAS
PubMed
Google Scholar
Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, et al. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res. 2008;7:2980–98.
Article
CAS
PubMed
Google Scholar
Chen Z, Wen B, Wang QH, Tong W, Guo J, Bai X, et al. Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in Thermoanaerobacter tengcongensis. Mol Cel Proteomics. 2013;12:2266–77.
Article
CAS
Google Scholar
Wang J, Wang XR, Zhou Q, Yang JM, Guo HX, Yang LJ, et al. iTRAQ protein profile analysis provides integrated insight into mechanisms of tolerance to TMV in tobacco (Nicotiana tabacum). J Proteomics. 2016;132:21–30.
Article
CAS
PubMed
Google Scholar
Parker J, Koh J, Yoo MJ, Zhu N, Feole M, Yi S, et al. Quantitative proteomics of tomato defense against Pseudomonas syringae infection. Proteomics. 2013;13:1934–46.
Article
CAS
PubMed
Google Scholar
Martínez-Márquez A, Morante-Carriel J, Sellés-Marchart S, Martínez-Esteso MJ, Pineda-Lucas JL, Luque I, et al. Development and validation of MRM methods to quantify protein isoforms of polyphenol oxidase in loquat fruits. J Proteome Res. 2013;12:5709–22.
Article
PubMed
Google Scholar
Luo JL, Tang SH, Peng XJ, Yan XH, Zeng XH, Li J, et al. Elucidation of cross-talk and specificity of early response mechanisms to salt and PEG-simulated drought stresses in Brassica napus using comparative proteomic analysis. PLoS One. 2015;10:e0138974.
Article
PubMed
PubMed Central
Google Scholar
Muraoka S, Kume H, Watanabe S, Adachi J, Kuwano M, Sato M, et al. Strategy for SRM-based verification of biomarker candidates discovered by iTRAQ method in limited breast cancer tissue samples. J Proteome Res. 2012;11:4201–10.
Article
CAS
PubMed
Google Scholar
Kaur P, Rizk NM, Ibrahim S, Younes N, Uppal A, Dennis K, et al. iTRAQ-based quantitative protein expression profiling and MRM verification of markers in type 2 diabetes. J Proteome Res. 2012;11:5527–39.
Article
CAS
PubMed
Google Scholar
Barnabas L, Ramadass A, Amalraj RS, Palaniyandi M, Rasappa V. Sugarcane proteomics: an update on current status, challenges, and future prospects. Proteomics. 2015;15:1658–70.
Article
CAS
PubMed
Google Scholar
Jangpromma N, Kitthaisong S, Lomthaisong K, Daduang S, Jaisil P, Thammasirirak S. A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugarcane cultivars. Am J Biochem Biotechnol. 2010;6:89–102.
Article
CAS
Google Scholar
Ngamhui N, Akkasaeng C, Zhu YJ, Tantisuwichwong N, Roytrakul S, Sansayawichai T. Differentially expressed proteins in sugarcane leaves in response to water deficit stress. Plant Omics. 2012;5:365–71.
CAS
Google Scholar
Murad AM, Molinari HBC, Magalhães BS, Franco AC, Takahashi FSC, Franco OL, et al. Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PLoS One. 2014;9:e98463.
Article
PubMed
PubMed Central
Google Scholar
Pacheco CM, Pestana-Calsa MC, Gozzo FC, Mansur Custodio Nogueira RJ, Menossi M, Calsa Junior T. Differentially delayed root proteome responses to salt stress in sugar cane varieties. J Proteome Res. 2013;12:5681–95.
Article
CAS
PubMed
Google Scholar
Zhou G, Yang LT, Li YR, Zou CL, Huang LP, Qiu LH, et al. Proteomic analysis of osmotic stress-responsive proteins in sugarcane leaves. Plant Mol Biol Report. 2012;30:349–59.
Article
CAS
Google Scholar
Rahman MA, Ren L, Wu W, Yan YC. Proteomic analysis of PEG-induced drought stress responsive protein in TERF1 overexpressed sugarcane (Saccharum officinarum) leaves. Plant Mol Biol Report. 2014;33:716–30.
Article
Google Scholar
Lery LM, Hemerly AS, Nogueira EM, von Krüger WM, Bisch PM. Quantitative proteomic analysis of the interaction between the endophytic plant-growth-promoting bacterium Gluconacetobacter diazotrophicus and sugarcane. Mol Plant-Microbe Interact. 2011;24:562–76.
Article
CAS
PubMed
Google Scholar
Song XP, Huang X, Tian DD, Yang LT, Li YR. Proteomic analysis of sugarcane seedling in response to Ustilago scitaminea infection. Life Sci J. 2013;10:3026–35.
Google Scholar
Que YX, Xu LP, Lin JW, Ruan MH, Zhang MQ, Chen RK. Differential protein expression in sugarcane during sugarcane-Sporisorium scitamineum interaction revealed by 2-DE and MALDI-TOF-TOF/MS. Comp Funct Genomics. 2011;2011:989016.
Article
PubMed
PubMed Central
Google Scholar
Alexander KC, Ramakrishnan K. Infection of the bud, establishment in the host and production of whips in sugarcane smut (Ustilago scitaminea) of sugarcane. Proc Int Soc Sug Cane Technol. 1980;17:1452–5.
Google Scholar
Wang W, Vignani R, Scali M, Cresti M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis. 2006;27:2782–6.
Article
CAS
PubMed
Google Scholar
Wu JX, Xu ZL, Zhang YJ, Chai LJ, Yi HL, Deng XX. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot. 2014;65:1651–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duthie KA, Osborne LC, Foster LJ, Abraham N. Proteomics analysis of interleukin (IL)-7-induced signaling effectors shows selective changes in IL-7Rα449F knock-in T cell progenitors. Mol Cell Proteomics. 2007;6:1700–10.
Article
CAS
PubMed
Google Scholar
Guo YR, Singleton PA, Rowshan A, Gucek M, Cole RN, Graham DR, et al. Quantitative proteomics analysis of human endothelial cell membrane rafts evidence of MARCKS and MRP regulation in the sphingosine 1-phosphate-induced barrier enhancement. Mol Cell Proteomics. 2007;6:689–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sui JJ, Zhang JH, Tan TL, Ching CB, Chen WN. Comparative proteomics analysis of vascular smooth muscle cells incubated with S-and R-enantiomers of atenolol using iTRAQ-coupled two-dimensional LC-MS/MS. Mol Cell Proteomics. 2008;7:1007–18.
Article
CAS
PubMed
Google Scholar
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Escher C, Reiter L, MacLean B, Ossola R, Herzog F, Chilton J, et al. Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics. 2012;12:1111–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi M, Chang CY, Clough T, Broudy D, Killeen T, MacLean B, et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics. 2014;30:2524–6.
Article
CAS
PubMed
Google Scholar
Que YX, Xu LP, Xu JS, Zhang JS, Zhang MQ, Chen RK. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chin J Trop Crop. 2009;30:274–8.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Su YC, Xu LP, Xue BT, Wu QB, Guo JL, Wu LG, et al. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep. 2013;32:1503–19.
Article
CAS
PubMed
Google Scholar
Taniguti LM, Schaker PD, Benevenuto J, Peters LP, Carvalho G, Palhares A, et al. Complete genome sequence of Sporisorium scitamineum and biotrophic interaction transcriptome with sugarcane. PLoS One. 2015;10:e0129318.
Article
PubMed
PubMed Central
Google Scholar
Xiao J, Jin XH, Jia XP, Wang HY, Cao AZ, Zhao WP, et al. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics. 2013;14:197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaninotto F, La Camera S, Polverari A, Delledonne M. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol. 2006;141:379–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol. 2005;138:2111–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Ma XQ, Chiang YH, Yadeta KA, Ding PF, Dong LS, et al. Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity in Arabidopsis. Cell Host Microbe. 2014;16:473–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swiderski MR, Innes RW. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 2001;26:101–12.
Article
CAS
PubMed
Google Scholar
Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol. 2009;69:473–88.
Article
CAS
PubMed
Google Scholar
Fan J, Hill L, Crooks C, Doerner P, Lamb C. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol. 2009;150:1750–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin MM, Wang XF, Peng HR, Yao YY, Xie CJ, Han Y, et al. Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. Genomics Proteomics Bioinformatics. 2012;10:94–106.
Article
CAS
PubMed
Google Scholar
Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33:887–98.
Article
CAS
PubMed
Google Scholar
Nam KH, Li JM. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell. 2002;110:203–12.
Article
CAS
PubMed
Google Scholar
Su YC, Xu LP, Wang SS, Wang ZQ, Yang YT, Chen Y, et al. Identification, phylogeny, and transcript of chitinase family genes in sugarcane. Sci Rep. 2015;5:10708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan GQ, Xu E, Deng MJ, Zhao ZL, Niu SY. Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection. Genes Genomics. 2015;37:913–29.
Article
CAS
Google Scholar
Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol. 2002;3:371–90.
Article
CAS
PubMed
Google Scholar
Chen QZ, Guo WS, Feng LZ, Ye XZ, Xie WF, Huang XP, et al. Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii. J Proteomics. 2015;115:117–31.
Article
CAS
PubMed
Google Scholar
Zhong Y, Cheng CZ, Jiang NH, Jiang B, Zhang YY, Wu B, et al. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLoS One. 2015;10:e0126973.
Dong XN. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol. 1998;1:316–23.
Article
CAS
PubMed
Google Scholar
Loake G, Grant M. Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol. 2007;10:466–72.
Article
CAS
PubMed
Google Scholar
Broekaert WF, Delauré SL, De-Bolle MF, Cammue BP. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol. 2006;44:393–416.
Article
CAS
PubMed
Google Scholar
Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci U S A. 2007;104:1075–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14:S131–51.
CAS
PubMed
PubMed Central
Google Scholar
Ding LN, Xu HB, Yi HY, Yang LM, Kong ZX, Zhang LX, et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One. 2011;6:e19008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003;15:165–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol. 2004;7:465–71.
Article
CAS
PubMed
Google Scholar
Guo HW, Ecker JR. Plant responses to ethylene gas are mediated by SCF EBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell. 2003;115:667–77.
Article
CAS
PubMed
Google Scholar
Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89:1133–44.
Article
CAS
PubMed
Google Scholar
Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S. gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ. 2006;29:619–31.
Article
CAS
PubMed
Google Scholar
Fan J, Chen CX, Yu Q, Brlansky RH, Li ZG, Gmitter FG. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by “Candidatus Liberibacter asiaticus”. Physiol Plant. 2011;143:235–45.
Article
CAS
PubMed
Google Scholar
Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol. 2010;11:829–46.
CAS
PubMed
Google Scholar
Koutaniemi S, Warinowski T, Kärkönen A, Alatalo E, Fossdal CG, Saranpää P, et al. Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol. 2007;65:311–28.
Article
CAS
PubMed
Google Scholar
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A. 2006;103:230–5.
Article
CAS
PubMed
Google Scholar
Kim CY, Lee SH, Park HC, Bae CG, Cheong YH, Choi YJ, et al. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant-Microbe Interact. 2000;13:470–4.
Article
CAS
PubMed
Google Scholar
Mitchell HJ, Hall SA, Stratford R, Hall JL, Barber MS. Differential induction of cinnamyl alcohol dehydrogenase during defensive lignification in wheat (Triticum aestivum L.): characterisation of the major inducible form. Planta. 1999;208:31–7.
Article
CAS
Google Scholar
Liu YX, Zou DM, Wu BS, Lin DH, Zhang ZH, Wu JC. Cloning and expression analysis of a CCoAOMT homolog in loquat fruit in response to low-temperature storage. Postharvest Biol Technol. 2015;105:45–50.
Article
CAS
Google Scholar
Zhang GY, Zhang YJ, Xu JT, Niu XP, Qi JM, Tao AF, et al. The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana. Gene. 2014;546:398–402.
Article
CAS
PubMed
Google Scholar
Feng Y, Xue Q. The serine carboxypeptidase like gene family of rice (Oryza sativa L. ssp. japonica). Funct Integr Genomics. 2006;6:14–24.
Article
CAS
PubMed
Google Scholar
Liu HZ, Wang XE, Zhang HJ, Yang YY, Ge XC, Song FM. A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene. 2008;420:57–65.
Article
CAS
PubMed
Google Scholar
Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, et al. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature. 2001;411:1053–7.
Article
CAS
PubMed
Google Scholar
Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA. Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci U S A. 2009;106:20995–1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 2001;151:35–66.
Article
CAS
Google Scholar
Barna B, Fodor J, Harrach BD, Pogány M, Király Z. The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol Biochem. 2012;59:37–43.
Article
CAS
PubMed
Google Scholar
Mohr PG, Cahill DM. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol. 2003;30:461–9.
Article
CAS
Google Scholar
Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell. 2004;16:3460–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koga H, Dohi K, Mori M. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol. 2004;65:3–9.
Article
CAS
Google Scholar
de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 2007;26:1434–43.
Article
PubMed
PubMed Central
Google Scholar
Rodriguez PL. Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol. 1998;38:919–27.
Article
CAS
PubMed
Google Scholar
Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell. 1999;11:1897–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takken FL, Joosten MH. Plant resistance genes: their structure, function and evolution. Eur J Plant Pathol. 2000;106:699–713.
Article
CAS
Google Scholar
Boggs CL, Jackson LA. Mud puddling by butterflies is not a simple matter. Ecol Entomol. 1991;16:123–7.
Article
Google Scholar
Gu LH, Zhang SZ, Yang BP, Cai WW, Huang DJ, Wang WZ, et al. Introduction of chitin and β-1,3-glucan into sugarcane. Mol Plant Breeding (China). 2008;6:277–80.
CAS
Google Scholar