Li Z, Wang Y, Li X, Cao H, Zheng SJ. Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4. J Virol. 2013;87(2):1221–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vukea PR, Willows-Munro S, Horner RF, Coetzer TH. Phylogenetic analysis of the polyprotein coding region of an infectious South African bursal disease virus (IBDV) strain. Infect Genet Evol. 2014;21:279–86.
Article
CAS
PubMed
Google Scholar
Wei Y, Yu X, Zheng J, Chu W, Xu H, Yu L. Reassortant infectious bursal disease virus isolated in China. Virus Res. 2008;131(2):279–82.
Article
CAS
PubMed
Google Scholar
Dykstra CC, Hudson JC, Ewald S, Tidwell RR, Boykin DW. Methods and formulations for the treatment of infectious bursal disease in avian subjects. US; 2004.
Stram Y, Rogel A, Sela I, Edelbaum O, Shachar Y, Zanberg Y, Gontmakher T, Khayat E. Recombinant vaccines against IBDV. US; 2003.
Muller H, Mundt E, Eterradossi N, Islam MR. Current status of vaccines against infectious bursal disease. Avian Pathol. 2012;41(2):133–9.
Article
PubMed
Google Scholar
Mardani K, Browning GF, Ignjatovic J, Noormohammadi AH. Rapid differentiation of current infectious bronchitis virus vaccine strains and field isolates in Australia. Aust Vet J. 2006;84(1–2):59–62.
Article
CAS
PubMed
Google Scholar
Toro H, Pennington D, Gallardo RA, van Santen VL, van Ginkel FW, Zhang J, Joiner KS. Infectious bronchitis virus subpopulations in vaccinated chickens after challenge. Avian Dis. 2012;56(3):501–8.
Article
PubMed
Google Scholar
Ramireznieto GC. Host molecular responses in chickens infected with an avian influenza virus. Dissertations & Theses - Gradworks. 2008.
Li YP, Handberg KJ, Juul-Madsen HR, Zhang MF, Jørgensen PH. Transcriptional profiles of chicken embryo cell cultures following infection with infectious bursal disease virus. Arch Virol. 2007;152(152):463–78.
Article
CAS
PubMed
Google Scholar
Wong RT, Hon CC, Zeng F, Leung FC. Screening of differentially expressed transcripts in infectious bursal disease virus-induced apoptotic chicken embryonic fibroblasts by using cDNA microarrays. J Gen Virol. 2007;88(Pt 6):1785–96.
Article
CAS
PubMed
Google Scholar
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.
Article
CAS
PubMed
Google Scholar
Avian dendritic cells: phenotype and ontogeny in lymphoid organs. Nagy N, Bódi I, Oláh I. Dev Comp Immunol. 2016;58:47-59. doi: 10.1016/j.dci.2015.12.020. Epub 2016 Jan 2.
Olah I, Glick B, McCorkle F, Stinson R. Light and electron microscope structure of secretory cells in the medulla of bursal follicles of normal and cyclophosphamide treated chickens. Dev Comp Immunol. 1979;3(1):101–15.
Article
CAS
PubMed
Google Scholar
Liang J, Yin Y, Qin T, Yang Q. Chicken bone marrow-derived dendritic cells maturation in response to infectious bursal disease virus. Vet Immunol Immunopathol. 2015;164(1–2):51–5.
Article
CAS
PubMed
Google Scholar
Gantier MP, Sadler AJ, Williams BR. Fine-tuning of the innate immune response by microRNAs. Immunol Cell Biol. 2007;85(6):458–62.
Article
CAS
PubMed
Google Scholar
Arriaga-Canon C, Fonseca-Guzman Y, Valdes-Quezada C, Arzate-Mejia R, Guerrero G, Recillas-Targa F. A long non-coding RNA promotes full activation of adult gene expression in the chicken alpha-globin domain. Epigenetics. 2014;9(1):173–81.
Article
CAS
PubMed
Google Scholar
Roeszler KN, Itman C, Sinclair AH, Smith CA. The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis. Dev Biol. 2012;366(2):317–26.
Article
CAS
PubMed
Google Scholar
Smyth LA, Boardman DA, Tung SL, Lechler R, Lombardi G. MicroRNAs affect dendritic cell function and phenotype. Immunology. 2015;144(2):197–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Z, Rothwell L, Young JR, Kaufman J, Butter C, Kaiser P. Generation and characterization of chicken bone marrow-derived dendritic cells. Immunology. 2010;129(1):133–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu J, Liang J, Kang H, Lin J, Yu Q, Yang Q. The stimulatory effect of different CpG oligonucleotides on the maturation of chicken bone marrow-derived dendritic cells. Poult Sci. 2014;93(1):63–9.
Article
CAS
PubMed
Google Scholar
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.
Article
PubMed
Google Scholar
Cyplik P, Schmidt M, Szulc A, Marecik R, Lisiecki P, Heipieper HJ, Owsianiak M, Vainshtein M, Chrzanowski L. Relative quantitative PCR to assess bacterial community dynamics during biodegradation of diesel and biodiesel fuels under various aeration conditions. Bioresour Technol. 2011;102(6):4347–52.
Article
CAS
PubMed
Google Scholar
Yang JH, Li JH, Jiang S, Zhou H, Qu LH. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 2013;41(Database issue):D177–87.
Article
CAS
PubMed
Google Scholar
Granucci F, Zanoni I, Ricciardi-Castagnoli P. Central role of dendritic cells in the regulation and deregulation of immune responses. Cell Mol Life Sci. 2008;65(11):1683–97.
Article
CAS
PubMed
Google Scholar
O’Donnell CD, Subbarao K. The contribution of animal models to the understanding of the host range and virulence of influenza A viruses. Microbes Infect. 2011;13(5):502–15.
Article
PubMed
PubMed Central
Google Scholar
Lin J, Yin YY, Qin T, Zhu LQ, Yu QH, Yang Q. Enhanced immune response of BMDCs pulsed with H9N2 AIV and CpG. Vaccine. 2014;32(50):6783–90.
Article
CAS
PubMed
Google Scholar
Hui RK, Leung FC. Differential expression profile of chicken embryo fibroblast DF-1 cells infected with cell-adapted infectious bursal disease virus. PLoS One. 2015;10(6):e0111771.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kano R, Konnai S, Onuma M, Ohashi K. Microarray analysis of host immune responses to Marek’s disease virus infection in vaccinated chickens. J Vet Med Sci. 2009;71(71):603–10.
Article
CAS
PubMed
Google Scholar
Wang YS, Ouyang W, Pan QX, Wang XL, Xia XX, Bi ZW, Wang YQ, Wang XM. Overexpression of microRNA gga-miR-21 in chicken fibroblasts suppresses replication of infectious bursal disease virus through inhibiting VP1 translation. Antiviral Res. 2013;100(1):196–201.
Article
CAS
PubMed
Google Scholar
Lee SI, Jeon MH, Kim JS, Jeon IS, Byun SJ. The gga-let-7 family post-transcriptionally regulates TGFBR1 and LIN28B during the differentiation process in early chick development. Mol Reprod Dev. 2015;82(12):967–75.
Article
CAS
PubMed
Google Scholar
Richardson MK, Crooijmans RP, Groenen MA. Sequencing and genomic annotation of the chicken (Gallus gallus) Hox clusters, and mapping of evolutionarily conserved regions. Cytogenet Genome Res. 2007;117(1–4):110–9.
Article
CAS
PubMed
Google Scholar
Gardner PP, Fasold M, Burge SW, Ninova M, Hertel J, Kehr S, Steeves TE, Griffiths-Jones S, Stadler PF. Conservation and losses of non-coding RNAs in avian genomes. PLoS One. 2015;10(3):e0121797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Fang M, Liu L, Wang S, Liu J, Ding X, Zhang S, Zhang Q, Zhang Y, Qiao L, et al. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genomics. 2013;14:897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wake NC, Ricketts CJ, Morris MR, Prigmore E, Gribble SM, Skytte AB, Brown M, Clarke N, Banks RE, Hodgson S, et al. UBE2QL1 is disrupted by a constitutional translocation associated with renal tumor predisposition and is a novel candidate renal tumor suppressor gene. Hum Mutat. 2013;34(12):1650–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito Y, Saito H. Role of CTCF in the regulation of microRNA expression. Front Genet. 2012;3:186.
CAS
PubMed
PubMed Central
Google Scholar
Cuddapah S, Jothi R, Schones DE, Roh T, Cui K, Zhao K. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains, Genome Research 19(1): 24–32. Genome Res. 2009;19(1):24–32.
Article
CAS
PubMed
PubMed Central
Google Scholar