Jain NK. Global advances in tea science. New Delhi: Aravali Books International Pvt Ltd.; 1999.
Vyas D, Kumar S. Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol Bioch. 2005;43(4):383–8.
Article
CAS
Google Scholar
Aoki S. Interaction of light and low-temperature in depression of photosynthesis in tea leaves. Jpn J Crop Sci. 1986;55(4):496–503.
Article
Google Scholar
Shen J, Wang Y, Chen C, Ding Z, Hu J, Zheng C, Li Y. Metabolite profiling of tea (Camellia sinensis L.) leaves in winter. Sci Hortic-Amsterdam. 2015;192:1–9.
Article
CAS
Google Scholar
Wang X, Zhao Q, Ma C, Zhang Z, Cao H, Kong Y, Yue C, Hao X, Chen L, Ma J, et al. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics. 2013;14:415.
Lee JY, Lee DH. Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiol. 2003;132(2):517–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chinnusamy V, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants. Physiol Plantarum. 2006;126(1):52–61.
Article
CAS
Google Scholar
Srinivasan A, Saxena NP, Johansen C. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crop Res. 1999;60(3):209–22.
Article
Google Scholar
Gao YB, Wang CL, Wu JY, Zhou HS, Jiang XT, Wu J, Zhang SL. Low temperature inhibits pollen tube growth by disruption of both tip-localized reactive oxygen species and endocytosis in Pyrus bretschneideri Rehd. Plant Physiol Bioch. 2014;74:255–62.
Article
CAS
Google Scholar
Sekiya J, Yamashita K, Nakagawa S, Shibata Y, Hatanaka A. Phospholipids of Tea Pollen. Agr Biol Chem Tokyo. 1988;52(1):243–7.
CAS
Google Scholar
Wang YH, Li XC, Zhu-Ge Q, Jiang X, Wang WD, Fang WP, Chen X, Li XH. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. PLoS One. 2012;7(12):e52436.
Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci. 2007;172(5):876–87.
Article
CAS
Google Scholar
Bai XG, Yang LM, Yang YQ, Ahmad P, Yang YP, Hu XY. Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in Maize. J Proteome Res. 2011;10(10):4349–64.
Article
CAS
PubMed
Google Scholar
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubis J. Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber. J Plant Growth Regul. 2009;28(2):177–86.
Article
CAS
Google Scholar
Bouchard JN, Yamasaki H. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol. 2008;49(4):641–52.
Article
CAS
PubMed
Google Scholar
Cui XM, Zhang YK, Chen XL, Jin H, Wu XB. Effects of exogenous nitric oxide protects tomato plants under copper stress, 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Vols 1–11. 2009. p. 4417–23.
Google Scholar
Wang YB, Feng HY, Qu Y, Cheng JQ, Zhao ZG, Zhang MX, Wang XL, An LZ. The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot. 2006;57(1–2):51–61.
Article
CAS
Google Scholar
Zhao MG, Chen L, Zhang LL, Zhang WH. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol. 2009;151(2):755–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majlath I, Szalai G, Soos V, Sebestyen E, Balazs E, Vankova R, Dobrev PI, Tari I, Tandori J, Janda T. Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plantarum. 2012;145(2):296–314.
Article
CAS
Google Scholar
Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, Del Rio LA, Palma JM, Corpas FJ. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ. 2012;35(2SI):281–95.
Article
CAS
PubMed
Google Scholar
Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol J. 2014;12(5):601–12.
Article
CAS
PubMed
Google Scholar
Cui JX, Zhou YH, Ding JG, Xia XJ, Shi K, Chen SC, Asami T, Chen ZX, Yu JQ. Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ. 2011;34(2):347–58.
Article
CAS
PubMed
Google Scholar
Cantrel C, Vazquez T, Puyaubert J, Reze N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol. 2011;189(2):415–27.
Article
CAS
PubMed
Google Scholar
Zhao RR, Sheng JP, Lv SN, Zheng Y, Zhang J, Yu MM, Shen L. Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biol Tec. 2011;62(2):121–6.
Article
CAS
Google Scholar
Sehrawat A, Gupta R, Deswal R. Nitric oxide-cold stress signalling cross-talk, evolution of a novel regulatory mechanism. Proteomics. 2013;13(12–13):1816–35.
Article
CAS
PubMed
Google Scholar
Prado AM, Colaco R, Moreno N, Silva AC, Feijo JA. Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. Mol Plant. 2008;1(4):703–14.
Article
CAS
PubMed
Google Scholar
Prado AM, Porterfield DM, Feijo JA. Nitric oxide is involved in growth regulation and re-orientation of pollen tubes. Development. 2004;131(11):2707–14.
Article
CAS
PubMed
Google Scholar
Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ. Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. J Exp Bot. 2009;60(7):2129–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YH, Chen T, Zhang CY, Hao HQ, Liu P, Zheng MZ, Baluska F, Samaj J, Lin JX. Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes. New Phytol. 2009;182(4):851–62.
Article
CAS
PubMed
Google Scholar
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao YQ, Li J, Liu HJ, Xi Y, Xue M, Liu WH, Zhuang ZH, Lei MG. Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs. BMC Genomics. 2015;16.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Ye J, Fang L, Zheng HK, Zhang Y, Chen J, Zhang ZJ, Wang J, Li ST, Li RQ, Bolund L, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(SI):W293–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang N, Yue XL, Chen XL, Wu GF, Zhang TG, An LZ. Molecular cloning and partial characterization of a novel phospholipase D gene from Chorispora bungeana. Plant Cell Tiss Org. 2012;108(2):201–12.
Article
CAS
Google Scholar
Yang N, Yue XL, Zhang H, Wu GF, Ding FX, Zhang TG, An LZ. Characterization of phospholipase D from Chorispora bungeana callus in response to freezing stress. Biologia Plantarum. 2013;57(1):113–20.
Article
CAS
Google Scholar
Druege U, Franken P, Hajirezaei MR. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci. 2016;7:381.
Kim SA, Ahn SY, Yun HK. Transcriptome analysis of grapevine shoots exposed to chilling temperature for four weeks. Hortic Environ Biote. 2016;57(2):161–72.
Article
Google Scholar
Wang F, Guo ZX, Li HZ, Wang MM, Onac E, Zhou J, Xia XJ, Shi K, Yu JQ, Zhou YH. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent Jasmonate signaling. Plant Physiol. 2016;170(1):459–71.
Article
CAS
PubMed
Google Scholar
Janowiak F, Maas B, Dorffling K. Importance of abscisic acid for chilling tolerance of maize seedlings. J Plant Physiol. 2002;159(6):635–43.
Article
CAS
Google Scholar
Mata CG, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 2001;126(3):1196–204.
Article
CAS
PubMed Central
Google Scholar
Neill SJ, Desikan R, Clarke A, Hancock JT. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol. 2002;128(1):13–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhang J. Rapid accumulation of NO regulates ABA catabolism and seed dormancy during imbibition in Arabidopsis. Plant Signal Behav. 2009;4(9):905–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang P, Zhu JK, Lang Z. Nitric oxide suppresses the inhibitory effect of abscisic acid on seed germination by S-nitrosylation of SnRK2 proteins. Plant Signal Behav. 2015;10(6), e1031939.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hauser F, Waadt R, Schroeder JI. Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol. 2011;21(9):R346–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YJ, Zhao ZG, Si J, Di CX, Han J, An LZ. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul. 2009;59(3):207–14.
Article
CAS
Google Scholar
She J, Han ZF, Kim TW, Wang JJ, Cheng W, Chang JB, Shi SA, Wang JW, Yang MJ, Wang ZY, et al. Structural insight into brassinosteroid perception by BRI1. Nature. 2011;474(7352):472–U496.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russinova E, Borst JW, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, de Vries SC. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell. 2004;16(12):3216–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tossi V, Lamattina L, Cassia R. Pharmacological and genetical evidence supporting nitric oxide requirement for 2,4-epibrassinolide regulation of root architecture in Arabidopsis thaliana. Plant Signal Behav. 2013;8(7), e24712.
Article
PubMed
PubMed Central
CAS
Google Scholar
Divi UK, Krishna P. Overexpression of the Brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul. 2010;29(4):385–93.
Article
CAS
Google Scholar
Zhang AY, Zhang J, Zhang JH, Ye NH, Zhang H, Tan MP, Jiang MY. Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol. 2011;52(1):181–92.
Article
CAS
PubMed
Google Scholar
Ciardi JA, Deikman J, Orzolek MD. Increased ethylene synthesis enhances chilling tolerance in tomato. Physiol Plantarum. 1997;101(2):333–40.
Article
CAS
Google Scholar
Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol. 2010;73(3):241–9.
Article
CAS
PubMed
Google Scholar
Shi YT, Tian SW, Hou LY, Huang XZ, Zhang XY, Guo HW, Yang SH. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell. 2012;24(6):2578–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hua J, Chang C, Sun Q, Meyerowitz EM. Ethylene insensitivity conferred by Arabidopsis ERS gene. Scince. 1995;269(5231):1712–4.
Article
CAS
Google Scholar
Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR. Genetic-analysis of ethylene signal-transduction in Arabidopsis-Thaliana - 5 novel mutant loci integrated into a stress-response pathway. Genetics. 1995;139(3):1393–409.
CAS
PubMed
PubMed Central
Google Scholar
Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89(7):1133–44.
Article
CAS
PubMed
Google Scholar
Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell. 2003;115(6):679–89.
Article
CAS
PubMed
Google Scholar
Konishi M, Yanagisawa S. Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J. 2008;55(5):821–31.
Article
CAS
PubMed
Google Scholar
Zou Y, Zhang L, Rao S, Zhu XY, Ye LL, Chen WX, Li XP. The relationship between the expression of ethylene-related genes and papaya fruit ripening disorder caused by chilling injury. Plos One. 2014;9(12), e116002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sairam RK, Dharmar K, Chinnusamy V, Lekshmy S, Joshi R, Bhattacharya P. The role of non-symbiotic haemoglobin and nitric oxide homeostasis in waterlogging tolerance in Vigna species. Biologia Plantarum. 2012;56(3):528–36.
Article
CAS
Google Scholar
Li XL, Pan YJ, Chang BW, Wang YC, Tang ZH. NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front Plant Sci. 2016;6:1203.
He JM, Zhang Z, Wang RB, Chen YP. UV-B-induced stomatal closure occurs via ethylene-dependent NO generation in Vicia faba. Funct Plant Biol. 2011;38(4):293–302.
Article
CAS
Google Scholar
Mur LAJ, Laarhoven LJJ, Harren FJM, Hall MA, Smith AR. Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response. Plant Physiol. 2008;148(3):1537–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain M, Khurana JP. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. Febs J. 2009;276(11):3148–62.
Article
CAS
PubMed
Google Scholar
Rahman A. Auxin: a regulator of cold stress response. Physiol Plantarum. 2013;147(1):28–35.
Article
CAS
Google Scholar
Shibasaki K, Uemura M, Tsurumi S, Rahman A. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell. 2009;21(12):3823–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovaleva LV, Voronkov AS, Zakharova EV. Role of auxin and cytokinin in the regulation of the actin cytoskeleton in the in vitro germinating male gametophyte of petunia. Russ J Plant Physl+. 2015;62(2):179–86.
Article
CAS
Google Scholar
Schlicht M, Ludwig-Muller J, Burbach C, Volkmann D, Baluska F. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol. 2013;200(2):473–82.
Article
CAS
PubMed
Google Scholar
Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell. 2008;20(8):2117–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colebrook EH, Thomas SG, Phillips AL, Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol. 2014;217(Pt 1):67–75.
Article
CAS
PubMed
Google Scholar
Thomas SG, Phillips AL, Hedden P. Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A. 1999;96(8):4698–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang YJ, Deng DX. Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module. Mol Genet Genomics. 2014;289(1):1–9.
Article
CAS
PubMed
Google Scholar
Fernandez-Marcos M, Sanz L, Lorenzo O. Nitric oxide: an emerging regulator of cell elongation during primary root growth. Plant Signal Behav. 2012;7(2):196–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang A, Dai X, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot. 2012;63(7):2541–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu GH, Jiang LL, Ma XF, Xu ZS, Liu MM, Shan SG, Cheng XG. A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis. Plos One. 2014;9(10), e109399.
Article
PubMed
PubMed Central
CAS
Google Scholar
Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H. Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem Bioph Res Co. 2007;361(4):1048–53.
Article
CAS
Google Scholar
Kroncke KD. Zinc finger proteins as molecular targets for nitric oxide-mediated gene regulation. Antioxid Redox Signal. 2001;3(4):565–75.
Article
CAS
PubMed
Google Scholar
Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol. 2007;8(11):R249.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang XT, Gao YB, Zhou HS, Chen JQ, Wu JY, Zhang SL. Apoplastic calmodulin promotes self-incompatibility pollen tube growth by enhancing calcium influx and reactive oxygen species concentration in Pyrus pyrifolia. Plant Cell Rep. 2014;33(2):255–63.
Article
CAS
PubMed
Google Scholar
Chen T, Wu X, Chen Y, Li X, Huang M, Zheng M, Baluska F, Samaj J, Lin J. Combined proteomic and cytological analysis of Ca2+-calmodulin regulation in Picea meyeri pollen tube growth. Plant Physiol. 2009;149(2):1111–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rato C, Monteiro D, Hepler PK, Malho R. Calmodulin activity and cAMP signalling modulate growth and apical secretion in pollen tubes. Plant J. 2004;38(6):887–97.
Article
CAS
PubMed
Google Scholar
Yang TB, Peng H, Whitaker BD, Conway WS. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biol. 2012;12:19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Chung MY, Hur Y, Cho YG, Watanabe M, Nou IS. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genomics. 2015;16:178.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell. 2009;21(3):972–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford NM. Mechanisms for nitric oxide synthesis in plants. J Exp Bot. 2006;57(3):471–8.
Article
CAS
PubMed
Google Scholar
Jamai A, Dubois E, Vershon AK, Messenguy F. Swapping functional specificity of a MADS box protein: residues required for Arg80 regulation of arginine metabolism. Mol Cell Biol. 2002;22(16):5741–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. J Exp Bot. 2010;61(14):3901–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee CM, Thomashow MF. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2012;109(37):15054–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moscatelli A, Idilli AI. Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol. 2009;51(8):727–39.
Article
CAS
PubMed
Google Scholar
Kang B, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA. Electron tomography of RabA4b-and PI-4 K beta 1-labeled trans Golgi network compartments in Arabidopsis. Traffic. 2011;12(3):313–29.
Article
CAS
PubMed
Google Scholar
Weernink PAO, Schmidt M, Jakobs KH. Regulation and cellular roles of phosphoinositide 5-kinases. Eur J Pharmacol. 2004;500(1–3):87–99.
Article
CAS
Google Scholar
Guo F, McCubbin AG. The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. J Exp Bot. 2012;63(8):3083–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng SR, Sun J, Zhao R, Ding MQ, Zhang YN, Sun YL, Wang W, Tan YQ, Liu DD, Ma XJ, et al. Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis Plants. Plant Physiol. 2015;169(1):530. +.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombardo MC, Lamattina L. Nitric oxide is essential for vesicle formation and trafficking in Arabidopsis root hair growth. J Exp Bot. 2012;63(13):4875–85.
Article
CAS
PubMed
Google Scholar
Chen T, Teng N, Wu X, Wang Y, Tang W, Samaj J, Baluska F, Lin J. Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. Plant Cell Physiol. 2007;48(1):19–30.
Article
CAS
PubMed
Google Scholar
Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev. 2001;15(9):1115–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol. 2009;10(6):385–97.
Article
CAS
PubMed
Google Scholar
Lee JH, Kim WT. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells. 2011;31(3):201–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yee D, Goring DR. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J Exp Bot. 2009;60(4):1109–21.
Article
CAS
PubMed
Google Scholar
Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere. Curr Opin Plant Biol. 2006;9(6):631–8.
Article
CAS
PubMed
Google Scholar
Gingerich DJ, Gagne JM, Salter DW, Hellmann H, Estelle M, Ma L, Vierstra RD. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem. 2005;280(19):18810–21.
Article
CAS
PubMed
Google Scholar
Lyzenga WJ, Stone SL. Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot. 2012;63(2):599–616.
Article
CAS
PubMed
Google Scholar
Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant. 2016;9(1):21–33.
Article
CAS
PubMed
Google Scholar
Kulik A, Noirot E, Grandperret V, Bourque S, Fromentin J, Salloignon P, Truntzer C, Dobrowolska G, Simon-Plas F, Wendehenne D. Interplays between nitric oxide and reactive oxygen species in cryptogein signalling. Plant Cell Environ. 2015;38(2):331–48.
Article
CAS
PubMed
Google Scholar
Dixon RA, Pasinetti GM. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol. 2010;154(2):453–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lillo C, Lea US, Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ. 2008;31(5):587–601.
Article
CAS
PubMed
Google Scholar
Ashihara H, Kubota H. Patterns of adenine metabolism and caffeine biosynthesis in different parts of tea seedlings. Physiol Plantarum. 1986;68(2):275–81.
Article
CAS
Google Scholar
Yamaguchi S, Ninomiya K. Umami and food palatability. J Nutr. 2000;130(4):921s–6.
CAS
PubMed
Google Scholar
Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics. 2011;12.
Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, et al. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics. 2015;16:560.
Wang W, Sheng X, Shu Z, Li D, Pan J, Ye X, Chang P, Li X, Wang Y. Combined cytological and transcriptomic analysis reveals a nitric oxide signaling pathway involved in cold-inhibited Camellia sinensis pollen tube growth. Front Plant Sci. 2016;7:456.
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):130–644.
Article
CAS
Google Scholar
Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, et al. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19(5):651–2.
Article
CAS
PubMed
Google Scholar
Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In: Lengauer T, Schneider R, Bork P, Brutlag D, Glasgow J, Mewes HW, Zimmer R, editors. Proceedings of the seventh international conference on intelligent systems for molecular biology. Menlo Park: AAAI Press; 1999. p.138–148.
Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. Differential expression in RNA-seq: A matter of depth. Genome Res. 2011;21(12):2213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20(9):1453–4.
Article
PubMed
CAS
Google Scholar
Saldanha AJ. Java treeview--extensible visualization of microarray data. Bioinformatics. 2004;20(17):3246–8.
Article
CAS
PubMed
Google Scholar