Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
Article
CAS
PubMed
Google Scholar
Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, et al. Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A. 2011;108:5690–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–95.
Article
PubMed
Google Scholar
Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG, Giers SD, Hediger M, Jones AK, Kasai S, Leichter CA, et al. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol. 2014;15:466.
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–49.
Article
CAS
PubMed
Google Scholar
Norris KB. The bionomics of blow flies. Ann Rev Entomol. 1965;10:47–68.
Article
Google Scholar
Pape T, Blagoderov V, Mostovski MB. Order diptera linnaeus in animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa. 2011;2148:222–9.
Google Scholar
Singh B, Wells JD. Molecular systematics of the Calliphoridae (Diptera: Oestroidea): evidence from one mitochondrial and three nuclear genes. J Med Entomol. 2013;50:15–23.
Article
CAS
PubMed
Google Scholar
Chleir F. Maggot therapy for wound debridement. A randomized multicenter trial. Phlebologie Ann Vasc. 2012;65:75.
Google Scholar
Kirinoki-Ichikawa S, Miyamoto M, Tezuka A, Kubota Y, Takagi G, Iimura T, Takami Y, Matsuda N, Mizuno K. Limb salvage achievement by maggot debridement therapy (Mdt); the analysis of 164 chronic wound patients. Wound Repair Regen. 2014;22:A13.
Google Scholar
Sherman RA, Pechter EA. Maggot therapy: a review of the therapeutic applications of fly larvae in human medicine, especially for treating osteomyelitis. Med Vet Entomol. 1988;2:225–30.
Article
CAS
PubMed
Google Scholar
Steenvoorde P, Jacob CE, Van Doorn L, Oskam J. Maggot debridement therapy of infected ulcers: patient and wound factors influencing outcome - a study on 101 patients with 117 wounds. Ann R Coll Surg Engl. 2007;89:598–604.
Article
Google Scholar
Bisdorff B, Wall R. Sheep blowfly strike risk and management in Great Britain: a survey of current practice. Med Vet Entomol. 2008;22:303–8.
Article
CAS
PubMed
Google Scholar
Colwell DD, Dorchies P, Scholl PJ, Losson B, Boulard C, Chaudhury MF, Graf JF, Jacquiet P, Barillet E, Carta A, et al. Management of myiasis: current status and future prospects. Vet Parasitol. 2004;125:93–104.
Article
CAS
PubMed
Google Scholar
Hall M, Wall R. Myiasis of humans and domestic animals. Adv Parasitol. 1995;35:257–334.
Article
CAS
PubMed
Google Scholar
Knipling EF, Rainwater HT. Species and incidence of dipterous larvae concerned in wound myiasis. J Parasitol. 1937;23:451–5.
Article
Google Scholar
Byrd JH, Castner JL. Forensic entomology: the utility of arthropods in legal investigations. 2nd ed. Boca Raton: CRC Press; 2010.
Google Scholar
Amendt J, Zehner R, Johnson DG, Wells J. Future Trends in Forensic Entomology. Curr Concepts Forensic Entomol. 2010:353-68.
Greenberg B. Flies and disease. Princeton: Princeton University Press; 1971.
Google Scholar
Hubalek Z, Halouzka J. Persistence of clostridium botulinum type C toxin in blow fly (Calliphoridae) larvae as a possible cause of avian botulism in spring. J Wildl Dis. 1991;27:81–5.
Article
CAS
PubMed
Google Scholar
Fischer OA, Matlova L, Dvorska L, Svastova P, Bartl J, Weston RT, Pavlik I. Blowflies Calliphora vicina and Lucilia sericata as passive vectors of Mycobacterium avium subsp. avium, M. a. paratuberculosis and M. a. hominissuis. Med Vet Entomol. 2004;18:116–22.
Article
CAS
PubMed
Google Scholar
Asgari S, Hardy JR, Sinclair RG, Cooke BD. Field evidence for mechanical transmission of rabbit haemorrhagic disease virus (RHDV) by flies (Diptera:Calliphoridae) among wild rabbits in Australia. Virus Res. 1998;54:123–32.
Article
CAS
PubMed
Google Scholar
Maldonado MA, Centeno N. Quantifying the potential pathogens transmission of the blowflies (Diptera: Calliphoridae). Mem Inst Oswaldo Cruz. 2003;98:213–6.
Article
PubMed
Google Scholar
Brown CJ. House flies and Helicobacter pylori. Can Med Assoc J. 1997;157:130.
Google Scholar
Graczyk TK, Cranfield MR, Fayer R, Bixler H. House flies (Musca domestica) as transport hosts of Cryptosporidium parvum. Am J Trop Med Hyg. 1999;61:500–4.
CAS
PubMed
Google Scholar
Barnes KM, Dixon RA, Gennard DE. The antibacterial potency of the medicinal maggot, Lucilia sericata (Meigen): Variation in laboratory evaluation. J Microbiol Methods. 2010;82:234–7.
Article
PubMed
Google Scholar
Tantawi TI, Willams KA, Villet MH. An accidental but safe and effective use of lucilia cuprina (Diptera: Calliphoridae) in maggot debridement therapy in Alexandria, Egypt. J Med Entomol. 2010;47:491–4.
Article
PubMed
Google Scholar
Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, Newton RP, Ratcliffe NA. The antibacterial activity against MRSA strains and other bacteria of a < 500 Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera : Calliphoridae). Microbes Infect. 2008;10:325–33.
Article
PubMed
Google Scholar
Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect. 2004;6:1297–304.
Article
CAS
PubMed
Google Scholar
Cerovsky V, Zdarek J, Fucik V, Monincova L, Voburka Z, Bem R. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci. 2010;67:455–66.
Article
CAS
PubMed
Google Scholar
Jaklic D, Lapanje A, Zupancic K, Smrke D, Gunde-Cimerman N. Selective antimicrobial activity of maggots against pathogenic bacteria. J Med Microbiol. 2008;57:617–25.
Article
PubMed
Google Scholar
Kruglikova AA. Antimicrobial components of haemolymph and exosecretion of Larvae Lucilia sericata (Meigen) (Diptera, Calliphoridae). J Evol Biochem Physiol. 2011;47:534–42.
Article
CAS
Google Scholar
Margolin L, Gialanella P. Assessment of the antimicrobial properties of maggots. Int Wound J. 2010;7:202–4.
Article
PubMed
Google Scholar
van der Plas MJA, Dambrot C, Dogterom-Ballering HCM, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother. 2010;65:917–23.
Article
PubMed
CAS
Google Scholar
Dogandemir G, Koru O, Bedir O, Kilic A, Araz RE, Tanyuksel M, Basustaoglu AC. Evaluation of in vitro antimicrobial activity of whole body extracts of Lucilia Sericata Maggots. Am J Trop Med Hyg. 2010;83:62.
Google Scholar
Barnes KM, Gennard DE, Dixon RA. An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bull Entomol Res. 2010;100:635–40.
Article
CAS
PubMed
Google Scholar
Huberman L, Gollop N, Mumcuoglu KY, Black C, Galun R. Antimicrobial properties of whole body extracts and haemolymph of Lucilia sericata maggots. J Wound Care. 2007;16:123–7.
Article
CAS
PubMed
Google Scholar
Anstead CA, Korhonen PK, Young ND, Hall RS, Jex AR, Murali SC, Hughes DS, Lee SF, Perry T, Stroehlein AJ, et al. Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nat Commun. 2015;6:7344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertone MA, Courtney GW, Wiegmann BM. Phylogenetics and temporal diversification of the earliest true flies (Insecta: Diptera) based on multiple nuclear genes. Syst Entomol. 2008;33:668–87.
Article
Google Scholar
Whitworth T. Keys to the genera and species of blow flies (Diptera : Calliphoridae) of America North of Mexico. Proc Entomol Soc Wash. 2006;108:689–725.
Google Scholar
Putnam RJ. The role of carrion-frequenting arthropods in the decay process. Ecol Entomol. 1978;3:133–9.
Article
Google Scholar
Ullerich FH, Schottke M. Karyotypes, constitutive heterochromatin, and genomic DNA values in the blowfly genera Chrysomya, Lucilia, and Protophormia (Diptera: Calliphoridae). Genome. 2006;49:584–97.
Article
PubMed
Google Scholar
Picard CJ, Johnston JS, Tarone AM. Genome sizes of forensically relevant Diptera. J Med Entomol. 2012;49:192–7.
Article
CAS
PubMed
Google Scholar
Ramakodi MP, Singh B, Wells JD, Guerrero F, Ray DA. A 454 sequencing approach to dipteran mitochondrial genome research. Genomics. 2015;105:53–60.
Article
CAS
PubMed
Google Scholar
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Adam MP. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30:693–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics. 2010;Chapter 11:Unit 11 15.
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18.
Article
PubMed
PubMed Central
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7.
Article
CAS
PubMed
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33:W465–467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.
Article
CAS
PubMed
Google Scholar
Conesa A, Gotz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.
Article
PubMed
CAS
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall AB, Qi Y, Timoshevskiy V, Sharakhova MV, Sharakhov IV, Tu Z. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females. BMC Genomics. 2013;14:273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, Marygold SJ, Consortium F. FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res. 2016;44:D786–92.
Article
PubMed
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brown NP, Leroy C, Sander C. MView: a web-compatible database search or multiple alignment viewer. Bioinformatics. 1998;14:380–1.
Article
CAS
PubMed
Google Scholar
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. http://www.repeatmasker.org; 2013-2015.
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.
Article
CAS
PubMed
Google Scholar
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13:36–46.
CAS
Google Scholar
Vinson JP, Jaffe DB, O’Neill K, Karlsson EK, Stange-Thomann N, Anderson S, Mesirov JP, Satoh N, Satou Y, Nusbaum C, et al. Assembly of polymorphic genomes: algorithms and application to Ciona savignyi. Genome Res. 2005;15:1127–35.
Article
PubMed
PubMed Central
Google Scholar
Younger-Shephard S, Vaessin H, Bier E, Jan LY, Jan YN. Deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell. 1992;70:911–22.
Article
Google Scholar
McAlpine JF. Manual of Nearctic Diptera. Ottawa: Research Branch, Agriculture Canada; 1981.
Google Scholar
Sanchez L. Sex-determining mechanisms in insects. Int J Dev Biol. 2008;52:837–56.
Article
CAS
PubMed
Google Scholar
Concha C, Scott MJ. Sexual Development in Lucilia cuprina (Diptera, Calliphoridae) Is Controlled by the Transformer Gene. Genetics. 2009;182:785–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubendorfer A, Hediger M, Burghardt G, Bopp D. Musca domestica, a window on the evolution of sex-determining mechanisms in insects. Int J Dev Biol. 2002;46:75–9.
PubMed
Google Scholar
Carvalho AB. Origin and evolution of the Drosophila Y chromosome. Curr Opin Genet Dev. 2002;12:664–8.
Article
CAS
PubMed
Google Scholar
Carvalho AB, Vibranovski MD, Carlson JW, Celniker SE, Hoskins RA, Rubin GM, Sutton GG, Adams MD, Myers EW, Clark AG. Y chromosome and other heterochromatic sequences of the Drosophila melanogaster genome: how far can we go? Genetica. 2003;117:227–37.
Article
CAS
PubMed
Google Scholar
Negre B, Simpson P. The achaete-scute complex in Diptera: patterns of noncoding sequence evolution. J Evol Biol. 2015;28:1770–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wrischnik LA, Timmer JR, Megna LA, Cline TW. Recruitment of the proneural gene scute to the Drosophila sex-determination pathway. Genetics. 2003;165:2007–27.
CAS
PubMed
PubMed Central
Google Scholar
Erickson JW, Cline TW. A bZIP protein, sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex. Genes Dev. 1993;7:1688–702.
Article
CAS
PubMed
Google Scholar
Ingleby FC, Flis I, Morrow EH. Sex-biased gene expression and sexual conflict throughout development. Cold Spring Harb Perspect Biol. 2015;7:a017632.
Article
CAS
Google Scholar
Yang Y, Lu X. Drosophila sperm motility in the reproductive tract. Biol Reprod. 2011;84:1005–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Innocenti P, Morrow EH. Immunogenic males: a genome-wide analysis of reproduction and the cost of mating in Drosophila melanogaster females. J Evol Biol. 2009;22:964–73.
Article
CAS
PubMed
Google Scholar
Innocenti P, Morrow EH. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol. 2010;8:e1000335.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eirin-Lopez JM, Sanchez L. The comparative study of five sex-determining proteins across insects unveils high rates of evolution at basal components of the sex determination cascade. Dev Genes Evol. 2015;225:23–30.
Article
CAS
PubMed
Google Scholar
Verhulst EC, van de Zande L, Beukeboom LW. Insect sex determination: it all evolves around transformer. Curr Opin Genet Dev. 2010;20:376–83.
Article
CAS
PubMed
Google Scholar
Price DC, Egizi A, Fonseca DM. The ubiquity and ancestry of insect doublesex. Sci Rep. 2015;5:13068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cronmiller C, Cummings CA. The daughterless gene product in Drosophila is a nuclear protein that is broadly expressed throughout the organism during development. Mech Dev. 1993;42:159–69.
Article
CAS
PubMed
Google Scholar
Caudy M, Vassin H, Brand M, Tuma R, Jan LY, Jan YN. Daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell. 1988;55:1061–7.
Article
CAS
PubMed
Google Scholar
Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell. 1991;66:935–47.
Article
CAS
PubMed
Google Scholar
Dahanukar A, Hallem EA, Carlson JR. Insect chemoreception. Curr Opin Neurobiol. 2005;15:423–30.
Article
CAS
PubMed
Google Scholar
Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2003;100 Suppl 2:14537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rytz R, Croset V, Benton R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol. 2013;43:888–97.
Article
CAS
PubMed
Google Scholar
Vieira FG, Rozas J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol. 2011;3:476–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Buhl E, Xu M, Croset V, Rees JS, Lilley KS, Benton R, Hodge JJ, Stanewsky R. Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature. 2015;527:516–20.
Article
CAS
PubMed
Google Scholar
Cao D, Liu Y, Walker WB, Li J, Wang G. Molecular characterization of the Aphis gossypii olfactory receptor gene families. PLoS One. 2014;9:e101187.
Article
PubMed
PubMed Central
CAS
Google Scholar
Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, Gibson TJ, Benton R. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010;6:e1001064.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009;136:149–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dereeper A, Audic S, Claverie JM, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol Biol. 2010;10:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:W465–469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
PubMed
Google Scholar
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–52.
Article
PubMed
Google Scholar
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.
Article
PubMed
Google Scholar
Chevenet F, Brun C, Banuls AL, Jacq B, Christen R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. Bmc Bioinformatics. 2006;7:439.
Article
PubMed
PubMed Central
CAS
Google Scholar
Imler JL. Overview of Drosophila immunity: a historical perspective. Dev Comp Immunol. 2014;42:3–15.
Article
CAS
PubMed
Google Scholar
Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front Microbiol. 2015;6:19.
Article
PubMed
PubMed Central
Google Scholar
Ferrandon D, Imler JL, Hetru C, Hoffmann JA. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol. 2007;7:862–74.
Article
CAS
PubMed
Google Scholar
Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster. Annu Rev Immunol. 2007;25:697–743.
Article
CAS
PubMed
Google Scholar
Valanne S, Wang JH, Ramet M. The Drosophila Toll signaling pathway. J Immunol. 2011;186:649–56.
Article
CAS
PubMed
Google Scholar
Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelievre E, Gascan H, Ray KP, Morse MA, Imler JL, Gay NJ. Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat Immunol. 2003;4:794–800.
Article
CAS
PubMed
Google Scholar
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83.
Article
CAS
PubMed
Google Scholar
Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell. 1999;4:827–37.
Article
CAS
PubMed
Google Scholar
Kleino A, Valanne S, Ulvila J, Kallio J, Myllymaki H, Enwald H, Stoven S, Poidevin M, Ueda R, Hultmark D, et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 2005;24:3423–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samakovlis C, Kimbrell DA, Kylsten P, Engstrom A, Hultmark D. The immune response in Drosophila: pattern of cecropin expression and biological activity. Embo Journal. 1990;9:2969–76.
CAS
PubMed
PubMed Central
Google Scholar
Valanne S, Myllymaki H, Kallio J, Schmid MR, Kleino A, Murumagi A, Airaksinen L, Kotipelto T, Kaustio M, Ulvila J, et al. Genome-wide RNA interference in Drosophila cells identifies G protein-coupled receptor kinase 2 as a conserved regulator of NF-kappaB signaling. J Immunol. 2010;184:6188–98.
Article
CAS
PubMed
Google Scholar
Holzl H, Kapelari B, Kellermann J, Seemuller E, Sumegi M, Udvardy A, Medalia O, Sperling J, Muller SA, Engel A, Baumeister W. The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol. 2000;150:119–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meinander A, Runchel C, Tenev T, Chen L, Kim CH, Ribeiro PS, Broemer M, Leulier F, Zvelebil M, Silverman N, Meier P. Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling. Embo Journal. 2012;31:2770–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–91.
Article
CAS
PubMed
Google Scholar
Scott JG. Insect cytochrome P450s:Thinking beyond detoxification. Recent Adv Insect Physiol Toxicol Mol Biol. 2008:117–24.
Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol. 2007;52:231–53.
Article
PubMed
CAS
Google Scholar
David JP, Ismail HM, Chandor-Proust A, Paine MJ. Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120429.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scott JG. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol. 1999;29:757–77.
Article
CAS
PubMed
Google Scholar
International Glossina Genome I. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science. 2014;344:380–6.
Article
CAS
Google Scholar
Tijet N, Helvig C, Feyereisen R. The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene. 2001;262:189–98.
Article
CAS
PubMed
Google Scholar
Montella IR, Schama R, Valle D. The classification of esterases: an important gene family involved in insecticide resistance--a review. Mem Inst Oswaldo Cruz. 2012;107:437–49.
Article
CAS
PubMed
Google Scholar
Sogorb MA, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett. 2002;128:215–28.
Article
CAS
PubMed
Google Scholar
Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8.
Article
CAS
PubMed
Google Scholar
Ranson H, Hemingway J. Mosquito glutathione transferases. Methods Enzymol. 2005;401:226–41.
Article
CAS
PubMed
Google Scholar
Fang S. Insect glutathione S-transferase: a review of comparative genomic studies and response to xenobiotics. Bull Insectol. 2012;65:265–71.
Google Scholar
Ffrench-Constant RH, Daborn PJ, Le Goff G. The genetics and genomics of insecticide resistance. Trends Genet. 2004;20:163–70.
Article
CAS
PubMed
Google Scholar
Weill M. Overview of 40 years of insecticide resistance genes evolution in the mosquito culex pipiens. Pathogens Global Health. 2013;107:433–4.
Google Scholar
Liu N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Ann Rev Entomol. 2015;60:537–559.
Article
CAS
Google Scholar
Hoppe MA. The importance of insecticide resistance management in the control of the mosquito vectors of malaria. Am J Trop Med Hyg. 2010;83:178.
Google Scholar
Roxburgh NA, Shanahan GJ. Carbamate resistance in the sheep blowfly, Lucilia cuprina (Wied). Vet Rec. 1973;93:467.
Article
CAS
PubMed
Google Scholar
Hughes PB, Levot GW. Toxicity of 3 avermectins to insecticide susceptible and resistant larvae of lucilia-cuprina (Wiedemann) (Diptera, Calliphoridae). J Aust Entomol Soc. 1990;29:109–11.
Article
Google Scholar
Sales N, Levot GW, Hughes PB. Monitoring and selection of resistance to pyrethroids in the Australian sheep blowfly, Lucilia-Cuprina. Med Vet Entomol. 1989;3:287–91.
Article
CAS
PubMed
Google Scholar
Carvalho RA, Azeredo-Espin AML, Torres TT. Deep sequencing of New World screw-worm transcripts to discover genes involved in insecticide resistance. Bmc Genomics. 2010;11:695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Che-Mendoza A, Penilla RP, Rodriguez DA. Insecticide resistance and glutathione S-transferases in mosquitoes: a review. Afr J Biotechnol. 2009;8:1386–97.
CAS
Google Scholar
Cochrane BJ, Hargis M, Debelligny PC, Holtsberg F, Coronella J. Evolution of glutathione S-Transferases associated with insecticide resistance in drosophila. ACS Symp Ser. 1992;505:53–70.
Article
CAS
Google Scholar
Kramerov DA, Vassetzky NS. Origin and evolution of SINEs in eukaryotic genomes. Heredity (Edinb). 2011;107:487–95.
Article
CAS
Google Scholar
Jurka J. Non-LTR retrotransposons from the southern house mosquito. 2011;11:595.
Lavoie CA, Platt 2nd RN, Novick PA, Counterman BA, Ray DA. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mob DNA. 2013;4:21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Platt 2nd RN, Blanco-Berdugo L, Ray DA. Accurate transposable element annotation is vital when analyzing new genome assemblies. Genome Biol Evol. 2016;8:403–10.
Article
PubMed
PubMed Central
Google Scholar
Erzinclioglu YZ. The larvae of some blowflies of medical and veterinary importance. Med Vet Entomol. 1987;1:121–5.
Article
CAS
PubMed
Google Scholar
Zumpt F. Myiasis in man and animals in the Old World. London: Butterworths; 1965.
Google Scholar
Ali-Khan FE, Ali-Khan Z. A case of traumatic dermal myiasis in Quebec caused by Phormia regina (Meigen) (Diptera: Calliphoridae). Can J Zool. 1975;53:1472–6.
Article
CAS
PubMed
Google Scholar
Bolek MG, Coggins JR. Observations on myiasis by the calliphorid, Bufolucilia silvarum, in the eastern American toad (Bufo americanus americanus) from southeastern Wisconsin. J Wildl Dis. 2002;38:598–603.
Article
PubMed
Google Scholar
Chodosh J, Clarridge JE, Matoba A. Nosocomial conjunctival ophthalmomyiasis with cochliomyia macellaria. Am J Ophthalmol. 1991;111:520–1.
Article
CAS
PubMed
Google Scholar
Ferraz ACP, Proenca B, Gadelha BQ, Faria LM, Barbalho MGM, Aguiar-Coelho VM, Lessa CSS. First record of human myiasis caused by association of the species chrysomya megacephala (Diptera: Calliphoridae), Sarcophaga (Liopygia) ruficornis (Diptera: Sarcophagidae), and Musca domestica (Diptera: Muscidae). J Med Entomol. 2010;47:487–90.
Article
CAS
PubMed
Google Scholar
Hall RD, Anderson PC, Clark DP. A case of human myiasis caused by Phormia regina (Diptera: Calliphoridae) in Missouri, USA. J Med Entomol. 1986;23:578–9.
Article
CAS
PubMed
Google Scholar
Stevens J, Wall R. Species, sub-species and hybrid populations of the blowflies Lucilia cuprina and Lucilia sericata (Diptera:Calliphoridae). Proc Biol Sci. 1996;263:1335–41.
Article
CAS
PubMed
Google Scholar
Concha C, Belikoff EJ, Carey BL, Li F, Schiemann AH, Scott MJ. Efficient germ-line transformation of the economically important pest species Lucilia cuprina and Lucilia sericata (Diptera, Calliphoridae). Insect Biochem Mol Biol. 2011;41:70–5.
Article
CAS
PubMed
Google Scholar
VanLaerhoven SL. Blind validation of postmortem interval estimates using developmental rates of blow flies. Forensic Sci Int. 2008;180:76–80.
Article
CAS
PubMed
Google Scholar
Wells JD, LaMotte LR. Estimating the postmortem interval. In: Byrd JH, Castner JL, editors. Forensic Entomology: Utility of Arthropods in Legal Investigations. CRC Press (Boca Raton, FL); 2001: 263–85.
Byrd JH, Allen JC. The development of the black blow fly, Phormia regina (Meigen). Forensic Sci Int. 2001;120:79–88.
Article
CAS
PubMed
Google Scholar
Byrd JH, Butler JF. Effects of temperature on Cochliomyia macellaria (Diptera: Calliphoridae) development. J Med Entomol. 1996;33:901–5.
Article
CAS
PubMed
Google Scholar
Byrd JH, Butler JF. Effects of temperature on Chrysomya rufifacies (Diptera: Calliphoridae) development. J Med Entomol. 1997;34:353–8.
Article
CAS
PubMed
Google Scholar
Tarone AM, Picard CJ, Spiegelman C, Foran DR. Population and Temperature Effects on Lucilia sericata (Diptera: Calliphoridae) Body Size and Minimum Development Time. J Med Entomol. 2011;48:1062–8.
Article
CAS
PubMed
Google Scholar
Gallagher MB, Sandhu S, Kimsey R. Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J Forensic Sci. 2010;55:438–42.
Article
PubMed
Google Scholar
Owings CG, Spiegelman C, Tarone AM, Tomberlin JK. Developmental variation among Cochliomyia macellaria Fabricius (Diptera: Calliphoridae) populations from three ecoregions of Texas, USA. Int J Legal Med. 2014;128:709–17.
Article
PubMed
Google Scholar
Picard CJ, DeBlois K, Tovar F, Bradley JL, Johnston JS, Tarone AM. Increasing precision in development-based PMI estimates: What’s sex got to do with it? J Med Entomol. 2013;5:425–31.
Article
Google Scholar