Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, Ghissassi FE, et al. A review of human carcinogens—Part B: biological agents. Lancet Oncol. 2009;10:321–2.
Article
PubMed
Google Scholar
zur Hausen H. Papillomavirus infections—a major cause of human cancers. BBA-Rev Cancer. 1996;1288:F55–78.
Google Scholar
zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical investigations. Nat Rev Cancer. 2002;2:342–50.
Article
CAS
PubMed
Google Scholar
Kocjan BJ, Bzhalava D, Forslund O, Dillner J, Poljak M. Molecular methods for identification and characterization of novel papillomaviruses. Clin Microbiol Infect. 2015;21:808–16.
Article
CAS
PubMed
Google Scholar
Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30:F55–70.
Article
CAS
PubMed
Google Scholar
Vande Pol SB, Klingelhutz AJ. Papillomavirus E6 oncoproteins. Virology. 2013;445:115–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roman A, Münger K. The papillomavirus E7 proteins. Virology. 2013;445:138–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maufort JP, Williams SM, Pitot HC, Lambert PF. Human papillomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. Cancer Res. 2007;67:6106–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conway MJ, Meyers C. Replication and assembly of human papillomaviruses. J Dent Res. 2009;88:307–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Middleton K, Peh W, Southern S, Griffin H, Sotlar K, Nakahara T, et al. Organization of human papillomavirus productive cycle during neoplastic progression provides a basis for selection of diagnostic markers. J Virol. 2003;77:10186–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernard HU. The clinical importance of the nomenclature, evolution and taxonomy of human papillomaviruses. J Clin Virol. 2005;32:1–6.
Article
Google Scholar
Yamada T, Manos MM, Peto J, Greer CE, Munoz N, Bosch FX, et al. Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol. 1997;71:2463–72.
CAS
PubMed
PubMed Central
Google Scholar
Burk RD, Harari A, Chen Z. Human papillomavirus genome variants. Virology. 2013;445:232–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grodzki M, Besson G, Clavel C, Arslan A, Franceschi S, Birembaut P, et al. Increased risk for cervical disease progression of French women infected with the human papillomavirus type 16 E6-350G variant. Cancer Epidemiol Biomarkers Prev. 2006;15:820–2.
Article
CAS
PubMed
Google Scholar
Zehbe I, Wilander E, Delius H, Tommasino M. Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. Cancer Res. 1998;58:829–33.
CAS
PubMed
Google Scholar
Zehbe I, Voglino G, Delius H, Wilander E, Tommasino M. Risk of cervical cancer and geographical variations of human papillomavirus 16 E6 polymorphisms. Lancet. 1998;352:1441–2.
Article
CAS
PubMed
Google Scholar
Zehbe I, Voglino G, Wilander E, Delius H, Marongiu A, Edler L, et al. p53 codon 72 polymorphism and various human papillomavirus 16 E6 genotypes are risk factors for cervical cancer development. Cancer Res. 2001;61:608–11.
CAS
PubMed
Google Scholar
Cornet I, Gheit T, Franceschi S, Vignat J, Burk RD, Sylla BS, et al. Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J Virol. 2012;86:6855–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Terai M, Fu L, Herrero R, DeSalle R, Burk RD. Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J Virol. 2005;79:7014–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xi LF, Koutsky LA, Galloway DA, Kiviat NB, Kuypers J, Hughes JP, et al. Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. J Natl Cancer Inst. 1997;89:796–802.
Article
CAS
PubMed
Google Scholar
Villa LL, Sichero L, Rahal P, Caballero O, Ferenczy A, Rohan T, et al. Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J Gen Virol. 2000;81:2959–68.
Article
CAS
PubMed
Google Scholar
Berumen J, Ordonez RM, Lazcano E, Salmeron J, Galvan SC, Estrada RA, et al. Asian American variant of human papillomavirus 16 and risk for cervical cancer: a case–control study. J Natl Cancer Inst. 2001;93:1325–30.
Article
CAS
PubMed
Google Scholar
Xi LF, Koutsky LA, Hildesheim A, Galloway DA, Wheeler CM, Winer RL, et al. Risk for high-grade cervical intraepithelial neoplasia associated with variants of human papillomavirus types 16 and 18. Cancer Epidemiol Biomarkers Prev. 2007;16:4–10.
Article
CAS
PubMed
Google Scholar
Zuna RE, Moore WE, Shanesmith RP, Dunn ST, Wang SS, Schiffman M, et al. Association of HPV16 E6 variants with diagnostic severity in cervical cytology samples of 354 women in a US population. Int J Cancer. 2009;125:2609–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiffman M, Rodriguez AC, Chen Z, Wacholder S, Herrero R, Hildesheim A, et al. A population-based prospective study of carcinogenic human papillomavirus variant lineages, viral persistence, and cervical neoplasia. Cancer Res. 2010;70:3159–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freitas LB, Chen Z, Muqui EF, Boldrini NAT, Miranda AE, Spano LC, et al. Human Papillomavirus 16 Non-European Variants Are Preferentially Associated with High-Grade Cervical Lesions. PLoS One. 2014;9:e100746.
Article
PubMed
PubMed Central
Google Scholar
Zehbe I, Richard C, DeCarlo CA, Shai A, Lambert PF, Lichtig H, et al. Human papillomavirus 16 E6 variants differ in their dysregulation of human keratinocyte differentiation and apoptosis. Virology. 2009;383:69–77.
Article
CAS
PubMed
Google Scholar
Richard C, Lanner C, Naryzhny S, Sherman L, Lee H, Lambert PF, et al. The immortalizing and transforming ability of two common human papillomavirus 16 E6 variants with different prevalences in cervical cancer. Oncogene. 2010;29:3435–45.
Article
CAS
PubMed
Google Scholar
Niccoli S, Abraham S, Richard C, Zehbe I. The Asian-American E6 variant protein of human papillomavirus 16 alone is sufficient to promote immortalization, transformation, and migration of primary human foreskin keratinocytes. J Virol. 2012;86:12384–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Togtema M, Jackson R, Richard C, Niccoli S, Zehbe I. The human papillomavirus 16 European-T350G E6 variant can immortalize but not transform keratinocytes in the absence of E7. Virology. 2015;485:274–82.
Article
CAS
PubMed
Google Scholar
Jackson R, Togtema M, Lambert PF, Zehbe I. Tumourigenesis Driven by the Human Papillomavirus Type 16 Asian-American E6 Variant in a Three-Dimensional Keratinocyte Model. PLoS One. 2014;9:e101540.
Article
PubMed
PubMed Central
Google Scholar
Allen-Hoffmann BL, Schlosser SJ, Ivarie CA, Sattler CA, Meisner LF, O’Connor SL. Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line. NIKS J Invest Dermatol. 2000;114:444–55.
Article
CAS
PubMed
Google Scholar
Schütze DM, Snijders PJ, Bosch L, Kramer D, Meijer CJ, Steenbergen RD. Differential In Vitro Immortalization Capacity of Eleven, Probable High-Risk Human Papillomavirus Types. J Virol. 2014;88:1714–24.
Article
PubMed
PubMed Central
Google Scholar
Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A. Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenetics. 2011;2:233–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mine KL, Shulzhenko N, Yambartsev A, Rochman M, Sanson GF, Lando M, et al. Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nat Commun. 2013;4:1806.
Article
PubMed
PubMed Central
Google Scholar
Khoury JD, Tannir NM, Williams MD, Chen Y, Yao H, Zhang J, et al. The Landscape of DNA Virus Associations Across Human Malignant Cancers Using RNA-Seq: An Analysis of 3775 Cases. J Virol. 2013;87:8916–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bryant D, Onions T, Raybould R, Flynn Á, Tristram A, Meyrick S, et al. mRNA sequencing of novel cell lines from human papillomavirus type‐16 related vulval intraepithelial neoplasia: Consequences of expression of HPV16 E4 and E5. J Med Virol. 2014;86:1534–41.
Article
CAS
PubMed
Google Scholar
Chandrani P, Kulkarni V, Iyer P, Upadhyay P, Chaubal R, Das P, et al. NGS-based approach to determine the presence of HPV and their sites of integration in human cancer genome. Br J Cancer. 2015;112:1958–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cullen M, Boland J, Schiffman M, Zhang X, Wentzensen N, Yang Q, et al. Deep sequencing of HPV16 genomes: A new high-throughput tool for exploring the carcinogenicity and natural history of HPV16 infection. Papillomavirus Research. 2015;1:3–11.
Article
PubMed
PubMed Central
Google Scholar
Lavezzo E, Masi G, Toppo S, Franchin E, Gazzola V, Sinigaglia A, et al. Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region. Viruses. 2016;8:79.
Article
PubMed
PubMed Central
Google Scholar
Jones M, Dry IR, Frampton D, Singh M, Kanda RK, Yee MB, et al. RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation. PLoS Pathog. 2014;10:e1003896.
Article
PubMed
PubMed Central
Google Scholar
Holmes A, Lameiras S, Jeannot E, Marie Y, Castera L, Sastre-Garau X, et al. Mechanistic signatures of HPV insertions in cervical carcinomas. Genome Med. 2016;1:16004.
Google Scholar
Yang X, Li M, Liu Q, Zhang Y, Qian J, Wan X, et al. Dr.VIS v2.0: an updated database of human disease-related viral integration sites in the era of high-throughput deep sequencing. Nucl Acids Res. 2015;43:D887–92.
Article
PubMed
Google Scholar
Williams M, Rainville IR, Nicklas JA. Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations. Environ Mol Mutagen. 2002;39:22–32.
Article
CAS
PubMed
Google Scholar
Zhou S. Cytochrome P450 2D6: structure, function, regulation and polymorphism. CRC Press; 2016 Feb 24
del Rosario RC, Rayan NA, Prabhakar S. Noncoding origins of anthropoid traits and a new null model of transposon functionalization. Genome Res. 2014;24:1469–84.
Article
PubMed
PubMed Central
Google Scholar
Richards KL, Zhang B, Baggerly KA, Colella S, Lang JC, Schuller DE, et al. Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability. PLoS One. 2009;4:e4941.
Article
PubMed
PubMed Central
Google Scholar
Baba Y, Watanabe M, Murata A, Shigaki H, Miyake K, Ishimoto T, et al. LINE-1 hypomethylation, DNA copy number alterations, and CDK6 amplification in esophageal squamous cell carcinoma. Clin Cancer Res. 2014;20:1114–24.
Article
CAS
PubMed
Google Scholar
Xu B, Chotewutmontri S, Wolf S, Klos U, Schmitz M, Dürst M, et al. Multiplex identification of human papillomavirus 16 DNA integration sites in cervical carcinomas. PLoS One. 2013;8:e66693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durst M, Bosch FX, Glitz D, Schneider A, zur Hausen H. Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines. J Virol. 1991;65:796–804.
CAS
PubMed
PubMed Central
Google Scholar
Jeon S, Allen-Hoffmann BL, Lambert PF. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol. 1995;69:2989–97.
CAS
PubMed
PubMed Central
Google Scholar
Daniel B, Rangarajan A, Geetasree M, Elizabeth V, Krishna S. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J Gen Virol. 1997;78:1095–101.
Article
CAS
PubMed
Google Scholar
Lace MJ, Anson JR, Klussmann JP, Wang DH, Smith EM, Haugen TH, et al. Human papillomavirus type 16 (HPV-16) genomes integrated in head and neck cancers and in HPV-16-immortalized human keratinocyte clones express chimeric virus-cell mRNAs similar to those found in cervical cancers. J Virol. 2011;85:1645–54.
Article
CAS
PubMed
Google Scholar
Hawkins TB, Dantzer J, Peters B, Dinauer M, Mockaitis K, Mooney S, et al. Identifying viral integration sites using SeqMap 2.0. Bioinformatics. 2011;27:720–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. 2012;10:618–30.
Article
CAS
PubMed
Google Scholar
Bonfert T, Csaba G, Zimmer R, Friedel CC. Mining RNA–Seq Data for Infections and Contaminations. PLoS One. 2013;8:e73071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Yao H, Thompson EJ, Tannir NM, Weinstein JN, Su X. VirusSeq: software to identify viruses and their integration sites using next-generation sequencing of human cancer tissue. Bioinformatics. 2013;29:266–7.
Article
CAS
PubMed
Google Scholar
Li JW, Wan R, Yu CS, Wong N, Chan TF. ViralFusionSeq: accurately discover viral integration events and reconstruct fusion transcripts at single-base resolution. Bioinformatics. 2013;29:649–51.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Jia P, Zhao Z. VirusFinder: Software for Efficient and Accurate Detection of Viruses and Their Integration Sites in Host Genomes through Next Generation Sequencing Data. PLoS One. 2013;8:e64465.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katz JP, Pipas JM. SummonChimera infers integrated viral genomes with nucleotide precision from NGS data. BMC Bioinformatics. 2014;15:348.
Article
PubMed
PubMed Central
Google Scholar
Lau CC, Sun T, Ching AKK, He M, Li JW, Wong AM, et al. Viral-Human Chimeric Transcript Predisposes Risk to Liver Cancer Development and Progression. Cancer Cell. 2014;25:1–15.
Article
Google Scholar
Johansson C, Schwartz S. Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat Rev Microbiol. 2013;11:239–51.
Article
CAS
PubMed
Google Scholar
Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32:7–15.
Article
Google Scholar
Wentzensen N, Ridder R, Klaes R, Vinokurova S, Schaefer U, Doeberitz M. Characterization of viral-cellular fusion transcripts in a large series of HPV16 and 18 positive anogenital lesions. Oncogene. 2002;21:419–26.
Article
CAS
PubMed
Google Scholar
Kraus I, Driesch C, Vinokurova S, Hovig E, Schneider A, von Knebel Doeberitz M, et al. The majority of viral-cellular fusion transcripts in cervical carcinomas cotranscribe cellular sequences of known or predicted genes. Cancer Res. 2008;68:2514–22.
Article
CAS
PubMed
Google Scholar
Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014;506:371–5.
Article
CAS
PubMed
Google Scholar
Peter M, Stransky N, Couturier J, Hupé P, Barillot E, de Cremoux P, et al. Frequent genomic structural alterations at HPV insertion sites in cervical carcinoma. J Pathol. 2010;221:320–30.
Article
CAS
PubMed
Google Scholar
Akagi K, Li J, Broutian TR, Padilla-Nash H, Xiao W, Jiang B, et al. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2014;24:185–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabbitts TH. Chromosomal translocations in human cancer. Nature. 1994;372:143–9.
Article
CAS
PubMed
Google Scholar
Hästbacka J, Kerrebrock A, Mokkala K, Clines G, Lovett M, Kaitila I, et al. Identification of the Finnish founder mutation for diastrophic dysplasia (DTD). Eur J Human Genet. 1999;7:664–7.
Article
Google Scholar
Sharma AK, Rigby AC, Alper SL. STAS domain structure and function. Cell Physiol Biochem. 2011;28:407–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pett M, Coleman N. Integration of high‐risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol. 2007;212:356–67.
Article
CAS
PubMed
Google Scholar
Bodelon C, Vinokurova S, Sampson JN, den Boon JA, Walker JL, Horswill MA, et al. Chromosomal copy number alterations and HPV integration in cervical precancer and invasive cancer. Carcinogenesis. 2016;37:188–96.
Article
CAS
PubMed
Google Scholar
Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 2015;47:158–63.
Article
CAS
PubMed
Google Scholar
Weitzman MD, Weitzman JB. What’s the damage? The impact of pathogens on pathways that maintain host genome integrity. Cell Host Microbe. 2014;15:283–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
White AE, Livanos EM, Tlsty TD. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes & Dev. 1994;8:666–77.
Article
CAS
Google Scholar
Kessis TD, Connolly DC, Hedrick L, Cho KR. Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene. 1996;13:427–31.
CAS
PubMed
Google Scholar
Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom SO, Gonzalez S, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A. 2000;97:10002–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duensing S, Münger K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 2002;62:7075–82.
CAS
PubMed
Google Scholar
Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 2011;145:435–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Havre PA, Yuan J, Hedrick L, Cho KR, Glazer PM. p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. Cancer Res. 1995;55:4420–4.
CAS
PubMed
Google Scholar
Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006;38:1043–8.
Article
CAS
PubMed
Google Scholar
How C, Bruce J, So J, Pintilie M, Haibe-Kains B, Hui A, et al. Chromosomal instability as a prognostic marker in cervical cancer. BMC Cancer. 2015;15:1.
Article
CAS
Google Scholar
Samanta S, Dey P, Nijhawan R. Micronucleus in Cervical Intraepithelial Lesions and Carcinoma. Acta Cytol. 2011;55:42–7.
Article
PubMed
Google Scholar
Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK, Liu S, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sichero L, Sobrinho JS, Villa LL. Oncogenic potential diverge among human papillomavirus type 16 natural variants. Virology. 2012;432:127–32.
Article
CAS
PubMed
Google Scholar
Hochmann J, Sobrinho JS, Villa LL, Sichero L. The Asian-American variant of human papillomavirus type 16 exhibits higher activation of MAPK and PI3K/AKT signaling pathways, transformation, migration and invasion of primary human keratinocytes. Virology. 2016;492:145.
Article
CAS
PubMed
Google Scholar
Zacapala-Gómez AE, Del Moral-Hernández O, Villegas-Sepúlveda N, Hidalgo-Miranda A, Romero-Córdoba SL, Beltrán-Anaya FO, et al. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells. Virology. 2016;488:187–95.
Article
PubMed
Google Scholar
Muller E, Brault B, Holmes A, Legros A, Jeannot E, Campitelli M, et al. Genetic profiles of cervical tumors by high-throughput sequencing for personalized medical care. Cancer Med. 2015;4:1484–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005;15:1451–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:R86.
Article
PubMed
PubMed Central
Google Scholar
Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, Mangan M, et al. Galaxy: a web‐based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010;Chapter 19:Unit 19.10.1-21
Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A. Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010;26:1783–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Picard Tools. http://broadinstitute.github.io/picard/. Accessed 13 May 2016
Flores ER, Allen-Hoffmann BL, Lee D, Sattler CA, Lambert PF. Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology. 1999;262:344–54.
Article
CAS
PubMed
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. 2013. http://www.R-project.org
gplots Package for R. http://cran.r-project.org/web/packages/gplots/gplots.pdf
Anders S, Pyl PT, Huber W. HTSeq — A Python framework to work with high-throughput sequencing data. bioRxiv. 2014. doi:10.1101/002824.
Google Scholar
Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009;25:288–9.
Article
CAS
PubMed
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.
Article
CAS
PubMed
Google Scholar